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EXECUTIVE SUMMARY

This report describes the current £findings and
status of Tracor's ongoing investigation of the multiple target
tracking problem. In particular, we have concentrated on the
problem of tracking multiple targets with data gathered by
distributed, passive acoustic sonobuoys. In this study, the
multiple target tracking problem has been 1initially divided
into two separate tasks: (1) the development of an efficient,
highly accurate, single target tracking algorithm; and (2) the
development of a non-parametric data sorting technique for
separating a sonobuoy's multiple target data stream into sets
of individual target data. Also included as an appendix is a
detailed discussion of an experimental design technique known
as Response Surface Methodology (RSM) that was used to quantify
the single target tracking algorithm's response to variations
in signal gathering and signal processing parameters.

In the past, Tracor has developed both a Hybrid
Tracking Algorithm (HTA) and a Sequential algorithm to perform
the single target tracking task. The former algorithm is known
as a hybrid algorithm because it uses a batch tracker to
initialize the tracking solution, and after the track has been
successfully initialized, it automatically switches to a
sequential tracker to continue updating the target's
trajectory. The current investigation has sought to improve
further both trackers' performances, and with that objective
the following modifications were made to their prior designs.

(1) The Sequential's initializer has been
modified to use a Standard Kalman Filter
plus a one-dimensional, numerical search
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technique to reduce the number of iterations
needed for the totally sequential tracker to
initialize a track.

(2) A batch~type, initial guess algorithm has
been developed which uses the 1initial
frequency and bearing measurements from two
or more sensors in a ‘''crossed-bearings,
crossed frequencies' technique to provide
reasonable guesses of the target's position
and velocity to both the HTA's and the
Sequential's initializer.

(3) The target's dynamic acceleration model has
been changed to a normal-tangential (or

along track-across track) acceleration model

{accession Tor
TS GRART to better describe possible target maneuvers.
DTIC TAB
gfﬁ:;ff:;:,> _ (4) A mobile sensor model has been added to the
e e T tracker to allow possible sensor motiocns
g:;;;;j, e T created by either sensor drift or by mobile
et s sensor platforms.
Di:: R (5) Finally, range, time-difference of arrival,

Doppler ratio, and Doppler difference

measurements have been added to the tracker
to augment the frequency and Dbearing
measurement models that could Dbe used

initially.
In order to extend the HTA or other single target

trackers into the area of multiple target tracking, Tracor
initiated an 1investigation 1into the possibility of wusing

ii
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cluster analysis techniques to sort multiple target data at the
individual sonobuoy 1level. Cluster analytic methods form a
branch of numerical taxonomy wnich can be used to search
quantitatively for natural groups or clusters within a set of
objects which have been described by an arbitrary set of
descriptive attributes. This initial 1investigation has shown
the application of cluster analysis methods to be a potentially

feasible means for solving the multiple target data sorting
problem. From our cluster analysis 1investigation, the
following configuration for processing the data has yielded the
best results:

(1) Four attributes have been used to describe
each of the multiple target measurements:
(a) Measurement time tag
(b) Frequency estimate
(c) Cosine of the bearing estimate
(d) Sine of the bearing estimate

(2) Each of these four attributes were
normalized to lie between 0 and 1.

(3) Euclidean distances were used to generate a
resemblance matrix of dissimilarity
coefficients between each measurement pair.

(4) Hierarchical, single-linkage clustering
algorithms have been shown to be the most
effective for sorting the data.

The cluster analysis techniques have been shown
to be effective at performing the following tasks:

iii
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(1) Outlier identification for single target
data sets.

(2) Sorting sets of multiple target data into
individual target data sets.

(3) Sorting multiple signals from ambient noise
in simulated DIFAR power spectra.

Unfortunately, at their present stage of
development, the cluster analysis techniques studied require
that some a_priori knowledge of the data be available before
thelir results can be properly interpreted. The clustering
results are currently output as tree diagrams and require the
analyst to carefully study the results to pick the optimal set
of clusters. However, it 1is felt that with further
investigation and development, these clustering techniques can
be automated so that '"'intelligent' operator interpretations of
the results will not be required. Then, these twechniques can
be used in real systems.

For both the single target tracking and the data
. sorting investigations, a non-Guassian, DIFAR data generation

model was used to simulate the narrowband frequency and bearing
I measurements. This DIFAR simulation models variations in the
' signal-to-noise ratio (SNR) of the signal received by the
E sonobuoy that are caused by propagation losses, smearing
! losses, and random variations in both the target’'s radiated
; levels and in ambient noise levels. The error distributions
: from this simulation program are non-Gaussian, so wmore
| realistic investigations of tracker performance and data

sorting performance can be undertaken than would be possible

with a simpler Gaussian model.
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Finally, this report contains a detailed
discussion of the RSM techniques used to quantitatively analyze
HTA's responses to variations in data gathering and data
processing parameters. Specifically, this study investigated
how changes in target signal strength, changes in sonobuoy
baseline distances, and changes in processor integration time
for generating frequency and bearing estimates affect the
overall tracking performance of Tracor's HTA. This
investigation was 1initiated not only to characterize HTA's
tracking performance, but it was also meant to show how RSM or
other experimental design techniques can be used to quantify
various algorithms' responses to variations in key parameters
so that they can be more effectively evaluated or compared
against other possible alternatives.
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1.0 INTRODUCTION

For many anti-submarine warfare (ASW) encounters,
the U.S. Navy is very concerned with the problem of detecting,
classifying, and tracking underwater submarines from data
gathered by passive sonobuoy patterns. One area where Tracor

has been heavily involved is the area of target tracking or
localization.

Tracor has developed several target tracking
algorithms, but they have dealt only with the question of
tracking one target from single target data gathered by wvarious
acoustic signal processors. Another problem of great
importance to the Navy concerns the questions of detecting,
classifying, and tracking multiple targets when they are
observed in tracking environments.

At Tracor, this multiple target tracking problem
has initially been divided into two distinct tasks. First, a
highly accurate, single target tracking algorithm has been
developed to determine current capabilities for 1localizing
single targets. Separate from this development, an investi-
gation has begun into the question of sorting and classifying
passive, multiple target data into sets of data for each
target. As this investigation continues, these two questions
will have to be considered together along with many other
problems. However, for now, only the development of an accu-
rate and reliable single taiget tracking algorithm along with
an initial approach for sorting data in the wmultiple target
problem have been cousidered. The following subsections
summarize the work performed under the current contract in
these two basic task areas.
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1.1 Hybrid and Sequential Algorithms' Modifications

Two different algorithms have been developed in
the past to track one target. One algorithm, the Hybrid
Tracking Algorithm, uses a weighted, least-squares, ''batch "
procedure to initialize the track and switches to an Extended
Kalman Filter to continue tracking after the tracker has been
successfully initialized. The other, a Sequential algorithm,
has also been developed. This algorithm used an Extended
Kalman Filter to both initialize the tracker and to continue
tracking the target after successful initialization has been
achieved. Both algorithms performed well, but it was felt that
both could be modified to improve their tracking accuracies,
range of applications, and tracker initialization
characteristics. Following 1is the 1list of modifications
implemented to improve these tracking algorithms.

(1) The sequential initializer was improved by
using a Standard Kalman Filter plus a
numerical, one-dimensional search technique
to find the optimal initial state for the
target. This procedure proved to Dbe
successful because fewer data points and
fewer iterations (relative to the old
design) were required for the new sequential
initializer to converge onto an acceptable
gset of initial conditions for the target.

(2) An inital guess algorithm was developed to

use the sonobuoys' data to provide a better
initial guess of the target's state. This
algorithm is used by both the Sequential's
and Hybrid's initializers.
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; Previously, an arbitrary point was picked
and the initializers sought to change this
guess until a suitable set of initial
conditions was found. Now the initial guess
algorithm wuses overlapping frequency and
bearing measurements from at least two
different sonobuoys in a 'crossed-bearing,
crossed-frequency' procedure to generate
reasonable least squares estimates of the
target's position and velocity. This

initial guess procedure has proved to be
more accurate and faster than the previous
method.

(3) The target's motion model has been changed
from a Cartesian acceleration model to a
normal-tangential model. In this context,
the tangential direction is defined to lie
parallel to the target's course heading and 7
the normal direction lies perpendicular to
this course heading. This new acceleration
model has been shown to be better than the
Cartesian one for modeling both maneuvering
and non-maneuvering target trajectories.

(4) A mobile sensor model has replaced the old
stationary model used for positioning the
sonobuoys. This allows the tracking algo-
rithms to process data from drifting sensors
as well as data from mobile sensors such as

hull-mounted and towed-array systems.




(5) New data models were also added to the
trackers' measurement models. In the past,

only frequency and bearing measurements liave
been used for localization by the Hybrid and
Sequential trackers. Now range, time-
difference of arrival, Doppler ratio, and
Doppler difference measurements can also be
processed by these trackers.

1.2 Simulation of Single Target Data

The data generation program used for these
studies simulated non-Gaussian, frequency and bearing estimates
for narrowband signals. This program simulated a comb filter
bank followed by a square law detector to generate an omni-
directional power versus frequency spectrum. A frequency
estimate was obtained from this power spectrum by a peak-
picking procedure which selects the single comb filter bin 1in
the spectrum that contained the most omnidirectional power.
After the frequency estimate was obtained, an arctangent
estimator used the simulated x and y channel power associated
with this chosen frequency bin to generate a bearing estimate.
If the signal strength of these estimates exceeded a set
threshold level, the estimates were accepted; if not, no
measurements were passed to the tracking algorithm.

1.3 Simulation of Multiple Target Data

To study the multiple target sorting problem, a
suitable data base had to be developed. A single target data
simulation program already existed, so it was decided to build
programs that could merge several different single target data

sets into one simulated multiple target data set. Initially,
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one program was developed that merged the output frequency and
bearing estimates for each simulated target into one set of
measurements for all of the targets. However, some theoretical
difficulties were encountered with this approach, so a second
program was developed. The second program merged the power
versus frequency spectrum for each of the targets into one
single spectrum. The data sorting techniques were then
employed at this multiple target, power spectrum level to
perform the sorting task. Data from both simulations were used
in the multiple target, data sorting investigation.

1.4 Multiple Target Data Sorting

Cluster analysis techniques have been chosen for
this initial 1investigation of the data sorting problem
associated with tracking multiple targets. This technique is
used in numerical taxonomy to search for natural groups or
clusters from a set of objects which have been described by an
arbitrary set of descriptive attributes. No a_ priori funec-
tional form or conditional relationship is assumed for the
objects and their attributes. Instead, the observer must only
pick the set of attributes that are to be used to describe the
objects and the clustering algorithms then search for natural
groupings of the objects based on these attributes. Extensive
development and use of these clustering techniques can be found
in the anthropological, biological, and social sciences.

Five different non-overlapping, hierarchical
clustering algorithms have been investigated. In addition,
five different data normalization techniques were studied, as
well as seven different methods for generating similarity-
dissimilarity coefficients. All of these techniques are
described 1in detail in Section 5. Based on the results
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obtained, the following conclusions have been formed from this

investigation:

(1) Attribute data should be normalized so that
the range of values lies between 0 and 1.

(2) The average Euclidean distance dissimilarity
coefficient proved to be the most useful for
generating the resemblance matrix for the

data sorting problem.

(3) The single 1linkage <clustering methods
yielded the best results for the data
sorting problem.

To sort the data, a set of attributes must be
used to describe the objects of interest. For the passive data
simulated in this investigation, the following set of attri-
butes was found to be the most useful for sorting the multiple
target measurements.

(1) Time tag of the measurement estimates

(2) Frequency estimates

(3) Cosine of the bearing estimate

(4) Sine of the bearing estimate
When the multiple target data have been described with these

attributes, the single 1linkage clustering algorithm has been
successful in performing the following functions:




Tracor Applied Sciences

(1) 1Identifying outliers to be removed from the
data set.

(2) Sorting multiple target measurements into
sets of individual target data.

(3) Sorting multiple signals from ambient noise
in simulated power spectra data.

These results have been quite encouraging. At
present, however, the algorithm is cumbersome and requires
considerable operator interaction. The difficulties appear to
be traceable to attribute normalization problems. The normal-
ization used for this study permitted successful clustering of
acoustic data, but a priori knowledge of the data was required
to set appropriate dissimilarity coefficient thresholds to
properly define target clusters. Nonetheless, valid data
clustering was demonstrated and it appears very promising that
efficient, automatic algorithms based on cluster analysis can
be developed to sort acoustic data from multiple targets.

1.5 Hybrid Algorithm Sensitivity Study

A study which used Response Surface Methodology
(RSM) techniques was initiated to quantify the tracking
response of the Hybrid algorithm to external factors such as

sonobuoy separation distance, target signal strength, and data
integration time. The RSM algorithms fit a polynomial hyper-
surface in a classical least squares sense to the data obtained
from a chosen test design. After a suitable least squares
solution has been found, one can then analytically solve for
the extremum of this fitted surface. The analyst may also
perform eigenvalue analysis to determine whether the extremum
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is a minimum, a maximum, or a saddlepoint and may also search
for the principle axes to determine directions of maximum and
minimum change. Finally, with RSM techniques, one can plot the
response surface and its associated contour plot to visually
investigate operating range trade-offs. From this analysis,
one can determine the optimal operating conditions for a
process, as well as compare the response of one process against
another process (for instance, the Hybrid's tracking response
versus the Maximum Likelihood Estimator's tracking response).
Results of this RSM analyis of the Hybrid tracker's response to
variations in certain data processing parameters are presented
in Appendix A.

1.6 Report Organization

The remainder of this report presents detailed
information on the work summarized above. Section 2 describes
the modifications made to the Hybrid and Sequential algorithms
to improve their tracking performances. Section 3 contains a
detailed description of the simulated DIFAR model used to
generate single target data. The two techniques for simulating
multi-target data are found in Section 4. Detailed
descriptions of cluster analysis techniques and of their
applications to the multi-target problem are provided 1in
Section 5. Section 6 suggests some recommended research tasks
for future investigation, and Section 7 presents a 1list of
references. Finally, the results of the RSM sensitivity
analysis of Hybrid's tracking performance are furnished in

Appendix A.
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2.0 IMPROVEMENTS TO THE TWO TRACKING ALGORITHMS

Under this contract, several modifications were
made to both the Sequential and Hybrid trackers to improve
their overall effectiveness. Efforts were made to improve the
track 1initialization characteristics for both trackers with
special interest taken in improving the Sequential's
initializer. Secondly, a new acceleration model was developed
to improve both algorithms tracking performance for maneuvering
and non-maneuvering trajectories. Lastly, new measurement
types and a new mobile sensor model were added to the trackers
to increase the possible application areas for both Trackers.
Descriptions of these modifications and their ensuing affect on
tracker performance are found in this section.

2.1 Improved Sequential Initialization Algorithm

One task 1in this study sought to improve the
Sequential's initializer in an effort to make it more
competitive with the Hybrid. Previous results (Reference 1)
have shown that the Hybrid outperformed the Sequential in
initializing the target tracks from the initial measurement
data. After initialization, both trackers' performance was
essentially equal. The Hybrid initializer utilized a ''batch"
filter along with a numerical, one-dimensional search procedure
to produce 1initial state estimates for the target. The
Sequential algorithm used an Extended Kalman Filter (EKF) and
an 1iteration scheme to produce estimates of the target's
initial state. It was felt that the Sequential's initializer
could be greatly improved by replacing the EKF with a Standard
Kalman Filter (SKF) and augmenting it with the same
one~dimensional search procedure used by the Hybrid's batch
initializer. This new Sequential initialization technique has

e | e ‘
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been developed and incorporated in the tracker. It has proved
to be very successful and has made this algorithm more
competitive with the Hybrid.

The new Sequential initialization algorithm is a
U-D Covariance Factorization of the SKF (Reference 2). Like
the batch 1initializer, the Sequential initializer uses the
tracking filter to find a search direction that wminimizes the
sum of squares of the measurement residuals. The algorithm
used to estimate the search direction is given below.

(a) Provide an initial guess for the target's
initial state vector X3, state covariance
matrix P0 and state noise covariance Q.

(b) Decompose Py into factors 061 and
-1
Uo .

(¢) 1Initialize the measurement to k = 0. Set

the initial search direction to SO = 0.

(d) Set the measurement counter to k = k + 1 and
get a measurement set tk’ Vi

(e) Solve the following differential equations
x = f(x,t)
where £(x,t) 1s the target's motion
model writtenm as a system of first

order equations.

s = As

10
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where

A = Af(x,8)

X
= wotwh - gmrpTruTTauTh T Teu D 0T

auTip e Ty ip Tty TaT g

with initial conditions

X = xk‘l
s = Sy,
D7t = Dl
Ut = Ut

(f) Compute the following relationships

Ty =V = %(xk, tk)
where g(xk, tk)is the computed
measurement model at time ty

h = 3g(x,t)

k IR t = tk

- -T
Vie = U by
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(g) Find x , such that

k’

<+
Xk Xk 2 % S k

is the estimate of the state that minimizes
the sum of squares of all measurement
residuals. Use a quadratic search procedure
to find .

(h) If the sum of squares from this iteration is
within a specified tolerance of the sum of
squares from the previous iteration, then
the algorithm has converged. Therefore, go

to (J).

(i) The algorithm did not converge. Therefore,
set x5 to the initial state vector that
satisfied (g) and increase the measurement
set. Then go to (d).

(j) Conduct the Modified Gallant Test, described
in Reference 1 to determine the need to
switch to the EKF target tracking
algorithm. If the test 1is passed, then
switch. If not, then go to (d).

Initial parameters are required for the state
vector XO’ state covariance nmatrix PO, and the state noise
covariance Q. Provided that ''reasonable'" wvalues of these
parameters are specified, then this sequential algorithm will
converge in the same number of iterations as the batch and to




e

Tracor Applied Sciences

approximately the same values. The next section outlines an
algorithm for obtaining wvalues for Xy and Py. Values for Q
are still user determined.

2.2 Simultaneous Bearing and Frequency Initial
Conditions Algorithm

A problem encountered with any algorithm that
needs a priori information is how to get a ''good" or
""reasonable' initial guess of that information. This is very
critical when the algorithm is applied to extremely nonlinear
problems because a poor choice of initial conditions can cause
the algorithm to converge on an erroneous solution. In
addition, a good guess may reduce the number of iterations
needed for the solutions to converge.

Target tracking algorithms process data collected
from various sensors to generate a tracking solution. It is
possible to generate a guess for the initial conditions of the
target from these data. Such techniques have been used 1in
satellite orbit determination (Reference 3). The method chosen
for use 1in this study requires inputs of both bearing and

frequency measurements from two different sensors. Beginning
with the tangent of the observed bearing measurement from
sensor 1i:
g _ sin 3, ) =Yy
tan i - = ~ z-X.
cos 3; i

the following linear equation relates the target's coordinates,
x and y, to those of the sonobuoys, Xy and Yi»

~ A ~

X Sin 8, - co N . si . = Y, ..
i y s Bl x; sin 8; y; cos 8,

13
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If a bearing measurement from sensor j 1is obtained, then the
following set of 1linear equations can be solved for the
target's position vector:

3 i i3 -V 2. T X. i . = Y. 2
X sin < y cos 3y X; sin 31 y; cos 2

X sin :, - v cos ; = x, 3in . - . COS 3.

Note that accurate position vectors of the sonobuoys are
required to solve these equations. If additional bearing data
are available from other sonobuoys at this time, they can also
be used to generate a least squares estimate of the initial
target position wvector. When least squares estimation
procedures are used, an initial covariance can be computed for
this position vector.

A similar procedure is available for determining
the initial velocity vector which uses simultaneous bearing and
frequency data. The Doppler equation for a non-stationary
target and sonobuoy i is

(r-1.) V.
l+ N -lwfl
liT=Tyi (¢
£; = £
i o p— =
(r-r.,)-v
1+ L
r-r;'.c

where

[at
<
]

position and velocity vectors of the target,

(2]
<
0

transmitted target frequency.

14
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By assuming a value for fo and rearranging the equation, the
result is the following linear equation for v

(r-ri) . f5 (l + (:-g-.),\‘]. ) 1
CE-r, e £1 T-r e

Noting that

i
'
R

i
T
il

By
)
H

where u is a unit vector with components cos Bi and sin Si,
the following simple equation results:

X cos 8; +y sin 8y
, £ 1.V
c [f—°—(1+uvl> -1]
i o4

After receiving another set of simultaneous bearing and

frequency data from sonobuoy j, the following set of linear
equations can be solved for the target velocity vector

el
<i
I

. -~ - A r f }.{.Cosg. + .,Siné.
X cos 8; + ¥ sin 8, = ¢ 0 (l + i i 7Yy i ) -l}

L 1 ¢
. R . - [ £ x.cosB, + v.sing.
o+ sin 4. = o jOOSFy T YyStRes
X cos 3J 7 sin BJ ¢ —EE- <l * Q ) -1]

15
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It is desirable to have several simultaneous data points to
insure a good least squares estimate of the velocity and its
covariance.

The methods outlined in this section have been
implemented and they give adequate estimates of the initial
position and velocity of the target. When the solutions are
from least squares determinations, it is possible to obtain
estimates of the diagonal terms of the state covariance matrix
for these parameters. This usually provides a sufficient
covariance matrix to be used as a_priori input to the target
tracking algorithms.

2.3 Constant Tangential and Normal Acceleration Model

Originally, the target motion model used in both
the Hybrid and Sequential was a constant Cartesian acceleration
model. This model was adequate for both the initialization and
tracking phases of both target tracking algorithms, but it was
felt that it 1insufficiently modeled target motions that
involved turning mareuvers. Initially, it was proposed to
investigate the possibility of adding second-order Taylor
series terms to the measurement model to compensate for the
trackers' weaknesses in modeling turning maneuvers. However,
after more closely examining this problem, it was determined
that these turning maneuvers could be better modeled by
changing the target's motion model rather than by adding higher
order measurement model terms. Consequently, in this study the
target's acceleration model was changed from the old Cartesian
coordinate model to a first order, Gauss-Markov process for
Normal and Tangential acceleration components. This model was
found to complicate the system dynamics, but it was also found
to have embedded 1in 1it, four commonly used motion models -~

16
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constant velocity, constant acceleration, constant radius turn
and variable radius turn.

The differential equations that describe the
tangential and normal accelerations are

7
[ .
N v

<
+
ZW
Ay

where

and ar and ay are the constant tangential and normal
accelerations. There are four analytical solutions to these
differential equations, depending on values of the constants
ap and ay- These four solutions are:

(1) constant velocity ap = 0, ay =0

r(t + At) I It r(t)
v(t + At) = \o 1 ()
(2) constant acceleration arp # 0, ay =0
T(t + At)

a .
T \
R 312 3 A W 0

v(t + At) 0 1 + *TT"\;%'TT At) v(t)

17
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(3) constant radius turn a; =0, ay # 0

\ : a,
T(t + At) l@m v(t) r(c) sin—= B — \

N

- -3y - T
v(t + At) TSTETT r(t) v(t) COS——7EyT -

(4) wvariable radius turn ap $ 0, ay #0

a = - &r _ -
T(c + o) (1 + Toeyr 48’ (u’_;_EL T(e) - 25 T(O) v(c))

- 2 a 2

a a 42 _ N
T = T + 2N )
\_I(C + At) (1 + Tr‘:,:-(%jrr At) (251\? v(t) -~ a‘N:kv 57”-— r(t) v(t)

Note the complexity of the solutions, especially
the variable radius turn. In order to use these equations in a
"batch'" tracking algorithm, it would be necessary to have
statistical tests for model selection and for data interval
selection. These are the same four motion models used in the
Maximum Likelihood Estimator (MLE) developed at Tracor
(Reference 4). From the test results documented in Reference
1, the MLE is not as fast as the Hybrid or Sequential because
it takes considerable computer time to select the proper motion

18
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model and data interval. To avolid these problems, the motion
model and data interval selection features have been dropped in
both the Hybrid and Sequential.

For the Sequential, data interval and motion
model selections could be dropped because an EKF is used to
generate target state estimates. This EKF modifies the
estimates for ar and ay and rectifies the target's state
vector estimates for each measurement processed. These
estimates are valid only for this update point and do not need
to be saved beyond the next update point. This process of not
saving past estimates relaxes some of the restrictions on this
tracker. The Hybrid, on the other hand, does use a ''batch”
filter to initialize the tracker. When batch processors are
used to generate estimates, one is more troubled with the data
interval and motion model selection because all the
measurements and tracker estimates are mapped back to the

initial epoch of the trajectory. If the wrong motion model or
data interval are chosen, the tracker cannot successfully map
all the information back to this initial epoch. However, the
; Hybrid only uses this ''batch'" filter to initialize the tracker
and then switches to an EKF as soon as adequate 1initial

conditions have been found. Typically, only 50 to 100 seconds
of target data are needed to successfully converge onto a set
of initial conditions. Within this time frame, one rarely
finds that a submarine will initiate some maneuver which would
require a motion model change. Furthermore, it 1is believed
that enough flexibility has been built into the Hybrid's motion
model to compensate partially for a single maneuver. Since the
"batch'' filter is used only to initialize the tracker and since

no drastic change in the target's motion is expected over the
relatively short initialization phase, the motion model and
data interval selection features of the MLE have not been
incorporated into the Hybrid.

19
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Reviewing the four common motions embedded in the
normal -tangential acceleration model, one notes the complexity

of the analytical solutions, particularly for the variable
radius turn. Complicating these equations even more is the way i
the acceleration directions are coupled to the velocity
components, leaving a system cf coupled differential
equations. Furthermore, to analytically solve these
differential equations, one would have to use a model selection
feature (which we are seeking to avoid) to determine which
analytical solution to use. Faced with all these problems, it
was decided that the way to implement the new motion model was
to numerically solve the differential equations with a
classical, fourth order Runga-Kutta algorithm described in
Reference 5. This allows the differential equations to be
integrated without performing motion model tests and without

decoupling the equations of integration.

2.4 Sensor Motion Model

Previously, the sonobuoys were assumed to be
stationary. Realistically, they drift due to ocean currents
and surface winds. Under these circumstances, it is possible
for each sonobuoy to drift in different directions.
Furthermore, mobile platforms are often used to gather acoustic
data. It is important to model the sensor motion as accurately
as possible in order to successfully model the measurement
process. To maintain generality, it was assumed that
associated with every data point is an estimate of the position
and velocity vectors of the sonobuoy. If the position vector
was required at an intermediate time, the following constant
velocity model is used:

Ei<c+;t) = {-i(t) + 'Gi(t):t
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This is an adequate model when small At's are used. An
advantage to using this model, which has been incorporated in
the trackers, is that both algorithms can now process data from
mobile sensors, such as towed arrays and hull-mounted systems
as well as data from drifting sonobuoys. Furthermore, Doppler
shifts can be better estimated by the tracking algorithms'
measurement model because sensor motion is accounted for in the

estimates.

2.5 New Data Models

Besides modifying the Hybrid's and Sequential's
target and sensor motion models, four new measurement types
were added to the measurement models. These new measurement
types 1include one active measurement and three passive,
two-sensor data types. The additions of these measurement
types enable the Hybrid to process most of the data types
available from acoustic signal processors.

The active range measurement for sensor 1 is
defined as:

where

- UT-E
pi A ].'l

¢ = gspeed of sound in water

At = time interval between transmitting and
receiving the reflected signal.
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Time difference of arrival of a signal between two sensors has
also been added to the measurement model. This measurement is
modeled as:

Another two-sensor measurement that can now be used 1s the
Doppler ratio. This data type is modeled as:

(E“Ei) . Gi 1 + (E-f-) . 6
+ - - -
£ AL S
f; L+ BB . (t-t.) . 9,

Te-t. 1] ¢ 1
i‘ri c

Finally, the 1last intersensor data measurement that was
modeled, the Doppler difference, is defined as:

1 + gl-.’-z‘j ) ":Ji (i--?:j) \-I
£1-fyaf, G T\ - [ P TEE T
1+‘(f.# L+ (r-rj).vi
- l‘-ril C “E__r'- C
J
2.6 Test Evaluation Criteria

The primary parameter wused to qualitatively
analyze the performance of the tracking algorithms 1is the
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position error. 1In order to avoid confusion in terminology,
position error is also called distance error. Previously, when
the position error was used for analysis of tracking results,
three measures of performance were computed. The first measure
was the average position error over the entire track. The next
measure was the convergence time, defined as the time required
for the tracker to converge to a steady state error value
smaller than some specified wvalue. The 1last performance
parameter was the predicted position error 1incurred by
projecting the tracker estimates forward for 300 seconds after
the last measurement was received. When the average and
predicted distance errors were below 500 meters and when the
position error converged to a steady state value below 500
meters, then the tracking algorithm performance was deemed
good. The same basic parameters were used to measure tracking
performance for this study, but two of the definitions have
been changed.

In this study, the average position error 1is
measured only after convergence has been achieved. Before,
convergence was attained when the position error reached a
steady state value below 500 meters. Now convergence results
when the position error reaches any steady state. Rather than
compute values for convergence time and distance errors
directly, they are now obtained from the plots of the position
error versus time. The predicted distance error 1is stil?
directly computed.

In addition to the plot of the position error,
plots of the tangential and normal components of the position
error were developed as an analysis aid. The tangential, or
along track, direction 1is defined to be along the velocity
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vector and the normal, Oor across track, direction is
perpendicular to it. Given the definition

where r and EE are the true and estimated position vectors,
respectively, the tangential or along track error is:

5;.1. = Sr ”f” »
it Vi

where §r = || 8T | .

The normal or across track error is

where w 1is the vector normal to the velocity vector. By
looking at these plots, one 1is able to make qualitative
conclusions about the geometrical effects of target tracking.

Another qualitative analysis aid is the plot of
the true and estimated trajectories. Included on these plots
are the sonobuoy positions and the 300 second prediction
point. Combined, these four plots give an analyst the tools
needed to evaluate tracking algorithms.
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2.7 Test Scenarios

The test sets used in testing the Hybrid and
Sequential algorithms were the revised OCCD case 1 and case 8
described in Appendix A, Table A.IV. These two scenarios are
referred to as scenarios 1 and 2, respectively, in this
subsection. In both, the target moved through the tri-tac
pattern of stationary sonobuoys at a constant speed of 5 meters
per second on a straight line course. For Scenario 1, the buoy
separation distance was 8000 meters, the signal-to-noise ratio
at one yard from the target was 82 dB and the signal
integration time was 20 seconds; while in Scenario 2, these
quantities were 5000 meters, 70 dB and 5.0 seconds,
respectively. The scenarios were not comprehensive because
they did not contain maneuvering targets or new data types.
The data used were bearing and frequency measurements from a
simulated DIFAR processor. Despite the shortcomings of these
scenarios, they were adequate for providing a preliminary
appraisal of the target tracking capabilities of the modified
Hybrid and Sequential algorithms.

2.8 Test Results

Tests were conducted on the Hybrid and Sequential
to compare the new algorithms' performances to the old
versions. 1In the tests, no initial conditions were given to
the algorithms except for an a priori state covariance matrix
that was required by the old Sequential. All other algorithmic
inputs were the same.

Tables 2.I and 2.II1 contain the quantitative

results for all of the trackers' solutions for scenarios 1 and
2. These tables contain the three tracking performance factors

25




TABLE 2.1

SCENARIO 1 TRACKING RESULTS

ALGORITHM CONVERGENCE AVERAGE PREDICTED ]
TIME POSITION POSITION (
(secs) ERTOR ERROR
(meters) (meters) ]
New Hybrid 110 25 100 ’
i
0ld Hybrid 130 30 102 I
New Sequential 110 25 101 !
0ld Sequential 130 30 AL 104 ’
TABLE 2.1I1
SCENARIO 2 TRACKING RESULTS
ALGORITHM CONVERGENCE ( AVERAGE ( PREDICTED
TIME POSITION ‘ POSITION
(secs) ERROR | ERROR
(meters) jﬁ (meters)
—
New Hybrid 100 60 E 647
0ld Hybrid 100 100 677
New Sequential 130 60 647
0ld Sequential N/A J N/A N/A
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for the four tracking algorithms studied, the old and new
versions of both the Hybrid and the Sequential. Figures 2.1
through 2.14 display the performance of the tracking filters
for both scenarios. The plots display the true trajectory with
a solid line and the estimated trajectory with a dashed line.
The x and y axes are the x and y components of the trajectories
in meters. The position error curves display the RMS distance
error between the estimated and true trajectories as functions
of time. These tables and figures are used below to evaluate
the performance of each of the algorithms.

Results from Table 2.I for Scenario 1 1indicate
that all four algorithms' performances were comparable. None
of the performance measures showed any significant difference
to indicate a particular algorithm's superiority, but the new
algorithms did converge sooner than the older ones. The
trajectory plots of Figures 2.1 through 2.4 show that each
algorithm could estimate a rather smooth trajectory and that
the predicted position was not far from the true position.
Overall, the distance error curves in Figures 2.5 through 2.8
indicate that all of the tracking algorithms' estimated tracks
were fairly close to the true ones. Since the distance error
plots for all the algorithms were small for this scenario, the
along-track and across-track distance error curves have not
been included. This scenario was very favorable in terms of
signal-to-noise ratio and tracking geometry, so good tracking
performance was expected and found for all of these algorithms.

The less favorable Scenario 2 produced poorer
results. The old Sequential algorithm was unable to initialize
in this case and therefore was unable to track the target.
Since the new Sequential algorithm did track this same target,
the modifications such as the 1inclusion of the 1initial guess
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algorithm and the new SKF initializer proved to be beneficial
in making the new version superior to the older one. From
Table 2.II it is seen that the quantitative tracking results
were nearly the same for the other three trackers. The overall

results were good, but the large prediction errors above 500
meters were unacceptable. Looking at Figures 2.9 through 2.11,
the algorithms show significant divergence Dbetween the
predicted track and the true one over the last portion of these
plots. The old Hybrid algorithm had more trouble than the
others early in the track, but the difficulty disappeared as
the scenario progressed. The two new algorithms had less
difficulty because of their ability to generate good initial
estimates from the data, even with poor sonobuoy coverage. The
tracking relied principally on two sonobuoys early in the track
with most of the data coming from No. 1 and some from No. 3.
Very little or no data came from No. 2 during the first 400
seconds. The position error plots of Figure 2.12 through 2.14
show that after convergence, there was a jump in the steady
state position error, particularly in the newer algorithms.
This increase was a result of the data beginning to enter the
algorithms from sonobuoy No. 2, while sonobuoy No. 3 was
beginning to 1loose <contact with the target. Further
investigation 1indicated that a pronounced jump in the
along-track position error occurred when sonobuoy No. 2 began
detecting the target. Since sonobuoy No. 2 is nearly along the
track, the change in steady state value can be attributed to
poor data accumulated by it.

2.9 Conclusions and Recommendations

The modifications made to the Hybrid and
Sequential tracking algorithms were designed to improve their
performances and expand their range of applications. Tests
conducted on the algorithms did not examine the effectiveness

28
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of the new data types because no adequate data generation was
available. The performance of the algorithms with active
range, time-difference of arrival, Doppler ratio and Doppler
difference data must be evaluated at a later date. Since all
simulated data came from stationary buoys, the sonobuoy motion
model remains to be evaluated.

Modifications that were tested 1include the
initial guess algorithm, the new Sequential initializer and the
new acceleration model. The quantitative results showed that
all the algorithms were comparable in tracking performance.
However, qualitatively, the results indicated that the new
versions of the Hybrid and Sequential algorithms are slightly
superior to their former versions. In the case of the
Sequential, the overall analysis shows that the new version is
superior to the original because it was able to track the
targets from both scenarios.

To fully evaluate the Hybrid and Sequential,
comprehensive tests should be devised to exercise every
modification made. These tests should have scenarios that use
both maneuvering and non-maneuvering targets, and also include
various combinations of data types such as bearing, frequency
and range or bearing and time difference of arrival. Any new
test should implement non-stationary sensors, such as drifting
sonobuoys or towed arrays.
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3.0 SIMULATION OF SINGLE TARGET DATA

Many types of acoustic processors are available
for generating measurement estimates such as frequency and
bearing for target tracking. Pagssive systems include OMNI
sonobuoys which are used to make narrowband frequency estimates
and DIFAR sonobuoys which are used to estimate both narrowband
frequency and bearing measurements. Another class of passive
detection systems include hull mounted sensors and towed
arrays. These systems are used by both surface ships and
submarines. Hull mounted and towed array systems are capable
of making long range, narrowband frequency and bearing esti-
mates as well as broadband bearing estimates. Besides the
passive systems mentioned, active systems are wused that
transmit high energy pulses and listen for return signals to
make measurement estimates. Active systems use return times to
generate range estimates for a target. Some of these systems
also generate Doppler frequency and bearing estimates based on
the return signal. However, the algorithms considered in this
study primarily require only passive narrowband acoustic
measurments for inputs. Furthermore, it was felt a priori that
narrowband frequency and bearing estimates for a given target
would be sufficient for use in sorting data for the multiple
target problem. Therefore, this study concentrates only on
data processors that generate passive, narrowband frequency and
bearing estimates for the single target and multiple target
tracking problems.

3.1 Passive Narrowband Frequency and Bearing

Simulator

A computer program was developed which generates
simulated narrowband frequency and bearing estimates
(Reference 1). The simulated data from this model yield
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non-Gaussian measurement errors that are falrly reasonable when
compared to samples of true sea data.

The data genevration program models a square law
detector which uses a MAX-OR processor to compute frequency
estimates and an arctangent processor to compute bearing
estimates. A schematic of the simulator model 1is given 1in
Figure 3.1. This figure shows a sensor that receives signal
plus ambient noise and that is followed by a comb filter bank.
This comb filter bank consists of a fixed number of frequency
bins that are Af Hz wide. The value Af is chosen by the user
so that the frequency estimate's resolution is controllable.
Following the comb filter bank, a square law detector is used
to detect the level of omnidirectional power present in each
frequency bin. The noise spectrum is assumed normalized. The
integration time for the square law detector 1is 1inversely
proportional to the bin width, Af, set for the comb filter
bank. From this inverse relationship, one can see that when
long integration times are used, fine frequency bin widths will
result for the comb filter bank. A post detection integrator
follows the square law detector 1in the data simulation
program. This post detection integrator allows the processor
to average the output of the square law detector over a fixed
number of samples to reduce the variance of the estimates.
This averaging process increases the probability that the
MAX-OR processor will pick the signal peak of the spectrum and
reject random noise peaks. The post detection integrator was
not used in this study because only single sample outputs from
the square law detector were used to generate measurement
estimates. After the optional post detection integrator, a
MAX-OR processor is used to analyze the power 1levels in each
bin of the comb filter bank. From the single bin chosen by the
MAX-OR processor, frequency and  bearing estimates are
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produced. To determine the frequency estimate, the bin number
of the chosen frequency bin is converted into a frequency value
which corresponds to the center of that bin. The simulated
X-channel and Y-channel outputs from the two dipole sensors for
the chosen frequency bin are then analyzed by an arctangent
processor to produce the bearing estimate. If the omni-
directional power level for the chosen frequency bin exceeds a
specific fixed value, the measurements are accepted; otherwise
they are rejected. This threshold 1level 1is wusually set to
limit severely the number of false alarms than can be accepted.

Another major portion of the data generation
process 1is concerned with scenario kinematics and time
variables. It 1s necessary to compute a variety of time
varying parameters for a simulated scenario Dbefore the
processor model described above can be used to generate a
sequence of frequency and bearing estimates for each sensor
involved in the simulation. ©Positions and velocities of all
the participants are passed to the data generation program so
that bearings, ranges, SNR's, and Doppler shifts can be
computed at each time increment for each sensor in a specified
scenario. A program which accepts sensor positions, target
initial conditions, and subsequent target motions as inputs has
been developed to provide the required functions for the
processor model. The following subsection details some of the
considerations involved in computing the processor's computed
SNR 1in this model. Details of the kinematic and geometry
portions of the scenario generation model will not be discussed
here.

3.2 SNR Calculations for the Qutput Measurements

Signal-to-noise ratio (SNR) calculations figure
prominently in the computing and the weighting of the frequency
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and bearing estimates. The accuracy of the calculations for
both frequency and bearing estimates are affected by the SNR of
the detected signal. Furthermore, the threshold test, which
determines whether or not an estimate is accepted, is based on
the SNR of the power in the omnidirectional channel for the
chosen frequency bin. Because of the importance of the SNR
computed for the detected signal in the data simulation
program, great care is taken to model most of the factors which
affect the SNR detected by the MAX-OR processor.

Representative values for the target's radiated

signal strength and for the ambient noise level are chosen.
The strength of the target's signal is chosen to conform with
values for various classes of targets. The ambient noise level
is chosen to model the effects of surface, marine life, and
distant surface ship noise. Given the target's signal strength
and the ambient noise level, the SNR in dB at one yard from the
target in a 1 Hz band is the difference between these two

levels.

Two different factors are then considered in
modeling the degradation of the signal's SNR found when the
signal 1is transmitted through the water to the sensor
(Reference 6). One loss is called the attenuation loss. This
loss is a function of the radiated frequency and the range or
distance from the target to the sensor. Attenuation loss 1is
much greater for high frequencies and is almost negligible for
the low frequencies used in this study. A more important loss
encountered with acoustic signals is the spreading loss. For
the ranges associated with deployed, narrowband systems, the
spreading loss is approximated by a simple 20 log R loss in dB,
where R i3 the magnitude of the distance in yards from the
target to the sensor. This one-way propagation model assumes
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spherical spreading in an isovelocity medium. While this 1is
not strictly true in the open ocean, it does account for the
main signal loss for <close range sonobuoy operations.
Variations in sound velocity will cause the actual losses to be
more or less than the modeled values; however, the general
study results from using the 20 log R loss should be indicative
of typical ocean results. If the results for particular
environmental conditions are required, tabulated propagation
losses may be substituted for the simple model. These two
losses, attenuation and spreading, are modeled in the data
simulation program to compute a reasonable SNR value for the
signal detected by a sonobuoy's receiver.

Besides the propagation losses, other factors are
modeled and affect the SNR value computed for the detected
signal. Both the ambient noise level and the signal strength
level are scaled at each time step by random noise terms to
model random fluctuations in these two values. These random
contributions affect the computed SNR for the omnidirectional ﬂ
channel for each bin and create more realistic fluctuations for
each bin.

The other factor considered in computing the SNR
is the possible smearing of one narrowband tone over several
bing during a given integration period. Due to the changing
dynamics and geometries of a target moving relative to a
particular sonobuoy, the Doppler shifted frequency of the
received signal varies with time. Particularly during CPA,
i.e., when the Doppler shift changes from compression to
expansion, the narrowband tone will slide through several

frequency bins both above and below the unshifted frequency
value. It 1is quite possible that the detected signal can slide
through two or more frequency bins within one integration time
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when the Doppler shifted frequency wvalue changes in time. When
this happens, the detected omnidirectional power for one signal
is effectively split over two or more frequency bins. Because
the MAX-OR processor picks only the single bin with the most
power and ignores all adjacent bins, the omnidirectional power
in the chosen bin will really contain only a fraction of the
signal's total power during that integration interval. This
causes a noticeable drop in the SNR for the detected signal for
this integration interval. This can lead to an apparent fading

or even a loss of the signal. This smearing of the signal over
several bins is modeled in the data genmeration program. The
program samples the signal many times over one given
integration period, and places simulated omnidirectional powers
in the appropriate frequency bin for each sample. At the end
of the integration period, a percentage is computed for the
amount of time the signal spends in each frequency bin. The
percentage for each bin then multiplies the power in that bin
to produce a simulated power distribution for that integration

period.

Propagation 1losses, random fluctuations in the
mean target signal level and the mean ambient noise level, and
the possible smearing of the signal across several frequency
bins are considered in the data simulation model. These
effects are considered to bhe the major factors which affect the
SNR value detected by the MAX-OR processor. Using these models
for the SNR calculations, data is produced that contains
periods of signal fading and signal 1loss. Furthermore, the
data is non-Gaussian and effectively tests the data sorting
capabilities and target tracking capabilities of candidate
algorithms.
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3.3 Simulated Measurement Error Curves

After developing this data generation simulator,
error standard deviation curves for both the bearing and
frequency estimates were needed to weight these measurements
for tracking purposes. A sample of over 22,000 data points was
used to compute the means and standard deviations of the
measurement errors for many different SNR wvalues. Generally,
over 1,000 samples were generated for each SNR range to assure
statistical accuracy 1in the calculations of the means and
standard deviations of the measurement errors. To produce the
sample, one fixed sonobuoy and a single, non-moving target were
used to generate simulated data. The range between the sensor
and the target remained fixed at 5,000 meters for all of the
data gathered. To obtain measurements over the full range of
SNR values, the input ambient noise level and target strength
level were varied from run to run. A frequency cell size of
0.1 Hz was used to analyze the frequency spectra. After the
simulation runs were made, the data were merged into one large
data set. The data were then sorted into ranges of SNR values,
and the error statistics were determined for each of these
ranges. In this fashion, the mean and the standard deviation
of the errors for the simulated frequency and bearing measure-
ments could be determined as functions of the SNR computed for
the detected signal.

The mean of the errors for both the frequency and
bearing estimates were near zero for all values of SNR. The
standard deviations of the measurement errors for both the
frequency and bearing estimates were found to be quite large
for low SNR's and to approach zero very quickly for medium to
high SNR's. These statistics confirm that poor measurement
estimates are made for weakly detected signals but more
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accurate measurements are estimated for more strongly detected
signals. The curves for the standard deviations of the
frequency and bearing errors as functions of the SNR are shown
in Figures 3.2 and 3.3, respectively. With these curves,
realistic threshold levels for this simulator can be chosen.
Furthermore, accurate weights for the simulated frequency and
bearing measurements can be computed as a function of the SNR
computed for the detected signal.
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4.0 SIMULATION OF MULTIPLE TARGET DATA

Detailed descriptions of the two multiple target
scenarios are presented below. This section describes these
scenarios used in the investigation of this problem as well as
the two techniques used to generate the simulated multiple
target data. With these data, the preliminary investigation
into a proposed data sorting approach was made possible.

4.1 Multiple Target Scenarios

Two scenarios were chosen to be used for the
initial multiple target study. The single target scenario
generation program, described in Section 3.0, was used to
simulate the motion for each separate target used in the
scenarios. This scenario generation program contained models
that allowed an analyst to simulate constant velocity
trajectories or to simulate maneuvering trajectories that
utilize either velocity changes or course heading changes.
Initially, however, only constant wvelocity, constant heading
trajectories have been used to reduce the number of variables
in the study.

4.1.1 Scenario One - The first scenario consisted of

three different targets which were observed by a tri-tac sono-
buoy pattern. This scenario is shown in Figure 4.1 and
described by the information in Table 4.I. Each target started
at a different location with a different speed and course
heading. All targets maintained their original course and
speed. The total simulated scenario lasted for 200 seconds for
all three targets. Measurements were updated at 10 second
intervals. This scenario was chosen to determine how well our
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Figure 4.1 Scenario 1, 3 Targets
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TABLE 4.1
DESCRIPTION OF SCENARIO 1
Buoy Information
Sensor X (m) Y (m) V (m/sec)
1 -3,500 0 0
I1I 0 7,062 0
1I1I 3,500 0 0
Target Information
Target Xo (m) Yo (m) V (m/sec) 8 (°) Xg (m) Ye (m)
1 -3,000 0 6 45 -2,151 849
2 2,500 0 9 90 2,500 1,800
3 0 4,000 4 300 400 3,307
All Targets: fo = 150 Hz
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data sorting approach could separate data from targets with
very different dynamics and geometries but that remained within
the observation range of the tri-tac sonobuoy pattern.

4.1.2 Scenario Two - A second, more difficult scenario

was designed to test the 1limitations of the data sorting
program. This scenario is shown in Figure 4.2 and is described
in detail in Table 4.II. Two targets traveled at precisely
equal velocities along parallel paths that were separated by
1500 m. These two trajectories ran for 400 seconds. The
course headings for both targets perpendicularly intersected an
imaginary line which joined sensors 1 and 3 of the tri-tac
pattern. This scenario was chosen to generate data that would
create problems for sensors 1 and 3. Since the two targets
traveled parallel trajectories, very 1little difference 1in
bearing estimates for the two targets could be detected by
sensors 1 and 3. Furthermore, if both targets transmitted
narrowhband tones at the same or very nearly the same center
frequency, 1little or no difference would be detected in the
Doppler shifted frequencies received by sensors 1 and 3. By
studying this scenario, it could be determined how similar two
different signals could be before the data sorting program
fails to separate the two target data into correct individual
data sets for each target.

4.2 Multiple Linetracker Data

The first multiple target data simulation scheme
employed the previously described DIFAR data generation program
to create linetracker data for each of the targets in the
scenarios. The results were then merged into a set of multiple
target data for each sonobuoy. The data for each target were
created as though an individual 1linetracker was dedicated to
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TABLE 4 .11
DESCRIPTION OF SCENARIO 2
Buoy Information
Sensor X (m) Y (m) V (m/sec)
I -3,500 | 1,000 0
II 0 7,062 0
111 3,500 1,000 0
Target Information
Target Xo (m) Yo (m) V (m/sec) 6 (°) Xfg (m) Ye (m)
1 750 8 90 750 3,200
2 ~750 8 90 750 3,200
= 150 Hz

or1

] =0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 Hz
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that target with no outside interference from any other
source. This assumption is not always valid, but it was used
in these simulations. Separate sets of linetracker frequency
and bearing measurements were created for each target in the
scenario. Then the data merging program merged the data by the
time tag and observing buoy number to create a single set of
multiple target data for each sensor. This last step destroys
line identification information that would be provided if
individual 1line trackers were actually used to track the
separate target limes. In a sense, this step makes the data
more realistic. This merged data could actually be produced if
the MAX-OR processor in the DIFAR simulator was replaced with a
processor that thresholds and then picks the n (n = 2, 3, 4,
etc.) largest peaks instead of only the single largest peak at
each output time. In any event, the data described in this
subsection will be referred to as multiple linetracker data in
the remainder of this report. Table 4.I11 contains a sample
set of the merged lipetracker data for all three targets as
simulated for sensor I of scenmario 1. Multiple linetracker
data for all three sensors in both scenarios were generated in
this fashion.

4.3 Simulated Multiple Target Frequency Spectra

As npoted above, practical questions were
encountered with simulating the multiple linetracker data as
described above. It was assumed that no interference from the
other signals was encountered by a linetracker that was set to
observe a gpecific frequency line. Sometimes narrowband tones
are so closely clumped together that the fixed width of the
linetracker's observation window makes it impossible to isolate
one line from all of the others. Particularly when the MAX-OR
processor is used to pick frequency estimates from a
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Table 4.III
SIMULATED MULTIPLE LINETRACKER DATA FOR SENSOR I FROM SCENARIO 1

SAMPLE | TIME|TARGET| FREQ. |BEARING || SAMPLE | TIME| TARGET| FREQ. |BEARING
NUMBER | sec |{NUMBER Hz. ) NUMBER | sec | NUMBER Hz. (°)
1 5 1 149.65 | 360 24 115 2 149.85| 14
2 3 150.15 52 25 1 149.45| 26
3 15 | 2 149.95 | 356 26 3 150.05| 34
4 1 149.55 0 27 125| 2 149.85| 15
5 25 2 149.95 { 359 28 1 149.45| 26
: 6 1 149 .55 10 29 3 150.05 1 51
| 7 3 150.15 43 30 135( 2 149.85 9
8 35 1 149.55 12 31 1 149.45| 28
9 45 2 149.95 14 32 3 150.05| 39
10 1 149.55 16 33 145] 2 149,85 0
11 55 2 149.95 6 34 1 149.45| 30
12 1 149 .55 18 Q 35 3 150.05 | 41
13 3 150.15 45 36 155| 2 149.85| 14
14 65 2 149.95 3 37 1 149.45{ 30
15 1 149 .55 19 38 3 150.05 | 62
16 75 2 149.95 4 39 165 2 149.85 24
17 1 149.45 | 23 40 1 149.451 31
18 85 2 149 .85 5 41 3 150.05 40
19 1 149.45 | 24 42 175] 2 149.75 1 22
20 95 1 149 .45 24 43 1 149.45! 30
21 3 150.05 48 VA 3 150.05 ! 42
22 105 2 149,85 4 45 185| 1 149.451 35
23 1 149.45 28 46 3 150.05' 33
e ﬁ
]
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linetracker's observation window, the presence of other signals
close to the desired signal may cause the frequency estimates
to skip in time from one signal to another. Such software
restrictions on the frequency estimator could prevent the DIF AR
sonobuoys from generating the type of theoretical, multiple
target data sets presented in Table 4.III.

Due to these problems, it was decided to look at

the power spectra with all of the signals present and no
"OR-ing" to see if signals could be sorted from the noise in
: these sgpectra. The following technique has been used to
| simulate power spectra with multiple narrowband tones present.

; To generate the simulated power spectra, the data

i generation program was first modified to furnish the simulated
omnidirectional power spectra and the associated X and Y
channel information instead of the simulated MAX-OR linetracker
estimates. This allowed the spectra for one ‘target's
trajectory to be saved so it could later be merged with another
target's set of spectra. Besides changing the output from the
data generation program, the option was added to zero out all
bins in the comb filter bank that contain only ambient noise
powers before the individual target power spectra were output.
With these two options, one set of simulated power spectra with
both noise and signal present could be generated for one
target. Next, power spectra that were zero filled except for
the bins with true signal present could be generated for the
remaining targets. These data sets could then be combined to
produce simulated spectra that contained the narrowband tones
of multiple targets and ambient noise.

The multiple target power spectra were generated
in the following fashion which is illustrated in block form in
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Figure 4.3. For one target in each of the two scenarios, a
simulated se. of power spectra was generated. The spectra for
the frequency band simulated contained the signature of the
target's npnarrowband tone as well as random, ambient noise.
This was done for all three sensors' channels. Next, power
spectra were generated for each of the remaining targets in
each scenario that contained only the target's individual
signature with all of the remaining frequency bins =zero
filled. Then, these spectra were merged to create the multiple
narrowband signals and random ambient noise. For each
frequency bin ipn the simulated frequency band, the simulated
data in the omnidirectional channel, the X-channel and the
Y-channel were merged for all of the targets involved in that
scenario. After thresholding the omni spectra, frequency and
bearing estimates are provided every 10 seconds for each bin
that exceeds the threshold. These data are generated for each
sensor for the duration of each scenario.
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5.0 CLUSTER ANALYSIS ¥OR MULTIPLE TARGET DATA SORTING

Cluster analysis is a field in numerical taxonomy
which seeks to collect objects 1into natural groupings by
objectively discriminating between arbitrary sets of attributes
which describe these objects. Most of the developments in this
field have been pioneered by researchers in the social,
biological, and anthropological sciences. Three excellent
sources of information about clustering techniques can be found
in References 7, 8, and 9. Clustering techniques have proven
to be useful in these fields for collecting items into natural
groups that were often overlooked by researchers. It was
suggested by Tracc: cthat cluster analysis be investigated as a
possible approach to the inherent problem of multi-target data
sorting for the larger problem of multi-target sonobuoy target
tracking. The concept suggested was that cluster analysis
might be wuseful 1in 1identifying and separating intermixed
measurements from multiple targets. Once 1input measurements
were separated by target, it would then be possible to overcome
multi-target 1initialization problems and it might also be
possible to solve the multi-target localization problem with
single target algorithms, each operating with measurements from
only one target. Research on the application of cluster
analysis to the data sorting problem for sonobuoy tracking is
the subject of this section.

A major task for this contract called for a
search to determine the optimum clustering procedure for
separating data from wmultiple targets into individual data
sets. For this study, one cluster program package consisting
of several clustering techniques developed by the Department of
Forestry and Outdoor Recreation at Utah State University was
used (Reference 10). This program's techniques were designed
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to group objects into hierarchical clusters. A second program
was developed at Tracor from papers written by Ling (References
11 and 12) to cluster items into sets of natural groupings.
These two programs formed the computational basis for this
study.

The objective of the present effort was to

explore the basic feasibility of performing acoustic data
sorting with the techniques of cluster analysis. This required
a multi-step process. First, as outlined above, the
computational capabilities required for such research were
acquired and developed. Then, the acoustic data sorting
problem was analyzed to permit it to be approached by the
methodologies of cluster analysis. This involved the
definition of objects and attributes for the problem. Next, a
preliminary study was conducted to narrow the scope of data
normalization, cluster measures, and clustering algorithms that
would be subjected to detailed study. With the range of
variables suitably narrowed, the final part of the study was to
evaluate, in some specific scenarios, the kind of performance
that could be obtained from cluster analysis with respect to

the data sorting problen.

The results obtained from this program of work
are encouraging, but they are incomplete. Further research is
indicated as being warranted. Specifically, the results show

that cluster analysis can perform several acoustic data sorting
functions, and that these functions should lend themselves to
future aytomation. Pogitive results were obtained in
connection with data outlier detection and removal,
multi-target data sorting by target, and target data/noise
sorting. It is felt that the results of this study establish
that cluster analysis can be used successfully to perform all
of these functions in the context of sonobuoy target tracking.
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These results are provided by a methodology that simultaneously
inspects all of the measured attributes of each data point and
then groups data together, via fixed rules, which are most
alike in terms of all the measured attributes. It could be
stated that this computational formalism simply automates a
process that is intuitively pleasing for acoustic data sorting;
namely, group data that are similar in their physical measures
such as frequency and bearing. Cluster analysis goes beyond
intuition, however, in that it can handle an n-dimensional
attribute vector as easily as it can a single sorting variable.

A serious drawback to the automated use of
cluster anlaysis was indicated by the results of this study,
however, and it appears to stem from the data normalization
problen. As will be discussed in the remainder of this
section, there is a cluster threshold that must be defined in
order to obtain successful cluster separation of valid data and
outliers, of multiple target data sets, or of valid target data
and noise. How to set this threshold was not determined by the
present work. This problem was clearly identified by the
present research, but it remains unsolved. Any practical
application of cluster analysis to acoustic data sorting nust
address this problem, but it was beyond the scope of this
study, which has dealt with the more basic aspects of concept
feasibility. In relation to Section 2 of this report, it
should be noted that the data sorting studied here falls into
the batch processing category. The concept should be
expandable to sequential processing, however, by the future
development of known techniques.

The remainder of this section 1s rather lengthy.

Subgections 5.1, 5.2, 5.3 and 5.4 introduce information about
various aspects of cluster analysis. Subsection 5.5 describes
the preliminary work done to reduce the scope of the detailed
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scenario evaluations. Subsection 5.6 discusses the application
of cluster analysis to the single target data outlier removal
problem. Input data for the algorithms are introduced here, as
are the clustering tree diagrams. It 1is these diagrams that
constitute the clustering algorithm's output at present. Which
data samples are clustered, and at what confidence level they

are grouped are indicated by these diagrams. Subsections 5.7
and 5.8 present very detailed scenario evaluation results.
Subsection 5.7 addresses the application of clustering to
multi-target data sorting with input data supplied by multiple
linetrackers. Subsection 5.8 addresses the application of
clustering to separating valid multi-target data from noise in
frequency spectra data. In these two discussions, Subsections
5.7.1, 5.7.2, 5.8.1 and 5.8.2 contain considerable detail, and
can be skipped over on first reading. Finally, Subsection 5.9
contains all the major <conclusions reached about the
feasibility of using cluster analysis for multi-target acoustic
data sorting based on the results of this study.

5.1 Definition of Objects and Attributes for
the Clustering Study

Cluster analysis requires that a group of objects
be collected so that it may be determined which of these
objects exhibits the most similarity between them. Associated
with these objects is a set of attributes that is used to
describe certain characteristics about the objects. The
objects are to be clustered into natural groups based upon the
descriptions provided by these attributes. For the current
investigation, the objects consisted of a set of prospective
acoustic signals that was to be separated from any ambient
noise, and the remaining true data were to be clustered into
data sets that should coincide with 1individual targets
represented in the data. Initially, the attributes for each
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prospective signal were chosen to consist of a data triplet
represented by the time tag, bearing estimate and either the
frequency estimate or its associated bin number in the comb
filter bank. After a 360° to 0° discontinuity in bearing
convention was encountered, it was decided to substitute the
sine and cosine of the bearing estimate for the bearing

estimate. This resulted in a set of attributes for each
prospective signal that consisted of the time tag, sine of the
bearing estimate, cosine of the bearing estimate and the
frequency estimate. The possibility of using the SNR value at
the receiver was considered as a fifth attribute, but the SNR
values were found to fluctuate so wildly that they did not
prove to be useful for data sorting.

5.2 Standardization of the Attributes

Before analyzing the results of the preliminary
study, several other concepts regarding the clustering programs
should be discussed. One point concerns standardizing the data
in some fashion to produce better results 1in grouping the
data. For the scenarios used, data were output at 10 second
intervals. The frequency measurements for a given target
varied by less than one Hz over the entire track and the
bearing measurements varied by, at most, one radian over any
track. The numerical difference in raw time units between
successive measurements for an individual target is much larger
than the numerical change 1in bearing units and frequency
units. Because of this 1large difference, the <clustering
programs tended to group measurements by time tags rather than
by individual targets when non-standardized data were used.
CLUSTAR, the clustering package from Utah State University,
contains five alternatives for standardizing data. The
standardization techniques may be employed with 1individual
attributes or may be used on all of the attributes at once.
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The attributes may be standardized in the following manners (i
refers to the individual attribute number, j to the data
quadruplet index number):

(2) Xy5/04

(3) (X5 - X3)/og
(4)  Xjj/max(Xij)
J

(5) (Xg5 - mﬁn(x,-_j))/(m?xmij) - mJ;n(xijn

All of these methods were used in this study to determine the
best standardization technique for our problenm.

5.3 Resemblance Matrix

After data have been accumulated and either
standardized or 1left alone, some measure of similarity or
dissimilarity between the objects must be generated. In
general, these measures are computed by either a similarity
coefficient or a dissimilarity coefficient. When similarity
coefficients are used, a large value for the coefficient for a
pair of objects implies a high degree of similarity between the
pair. Conversely, if dissimilarity coefficients are used, a
large coefficient for a given pair 1implies a large degree of
dissimilarity Dbetween the individuals. One of these
similarity/dissimilarity coefficients 1is used to transform the
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data matrix or the standardized data matrix into a resemblance
matrix. CLUSTAR has seven different similarity/dissimilarity
coefficients that may be used. These methods are named and
described below. (NOTE: Subscripts j and k refer to object
numbers, subscript i refers to a specific attribute.)

Method 1

correlation coefficient rjk

Method 2

average Euclidean distance dji

v %
g = (5, Ry - 0%

Method 3

vector dot product coefficient cos ejk
o
) Xy Xy
;521713 ik

cos ejk =

'—.
>3
e ro
~
~—
[ty

(L)
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Method 4

coefficient of shape difference 231

Let djk be the average of Euclidean distance

2 1 ¢ g 2
Let ij = ;7 iglxij - izlxik>

.. n
Zik = w1 ik - YGw

Method 5

Clifford-Stephenson coefficient ik

n N
DTN
5., = =
jk n
izl(xij + X31)
method 6

Canberra metric coefficient ik

1 0 1%y - Xyl
ik T oLl Xos FLO
i=1 ij ik

‘rethod 7

Bray-Curtis coefficient bjk

H-
(%]
[Raule ) I Jpste ]
—

—

min (Xij’ Xik)

o
("
P
|
2

15 7 X

-

Each of these seven mecasures have been tested to determine the

optimal similarity/dissimilarity coefficient for our problems.
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5.4 Clustering Algorithms

After a resemblance matrix has been computed for
a given data set, some clustering technique must be used to
determine how the data should be grouped. Several clustering
techniques can be used, but one desires to use the technique
which best clusters the data into groups that are appropriate
for a given problem. For the simulated multi-target data used
here, the correct grouping of data is known a_ priori; so, one
knows what patterns he should be 1looking for from the
clustering program's output. Knowing this information, tests
can be run to determine the best clustering technique for
separating data into individual target data for the multiple
target tracking problem.

Five clustering techniques are currently
available for separating the data. The four methods available
with the CLUSTAR package include the single linkage method, the
complete linkage method, the unweighted pair-group method using
arithmetic averages (UPGMA), and Ward's method. Ling's papers
describe a (k,r) clustering method. Each of these methods have
individual characteristics which make them more desirable for
specific problems. The single linkage method has also been
called the nearest neighbor or the minimum method. A candidate
member for an existing cluster has similarity to that cluster
equal to 1ts similarity to the nearest member within that
cluster. This technique often produces straggly, chain-like
clusters. Complete linkage, on the other hand, associates the
gsimilarity for a candidate point to an existing cluster to be
equal to 1ts similarity with the farthest member in the
cluster. The complete linkage method is also known as the
farthest neighbor method or the maximum method. Clusters
produced by this method tend tc be tight, hyperspherical,
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discrete clusters. According to Sneath and Sokal
(Reference 7), UPGMA 1is probably the most frequently used
clustering strategy. UPGMA tries to group new points into an
existing cluster by using an unweighted average similarity or
dissimilarity within the cluster. Ward's method wuses a
within-group sum of squares objective function to decide in
which cluster the point belongs. Ling describes his (k,r)
clustering technique as a generalized single linkage algorithm
which utilizes the k and r parameters to define the internal
properties of a cluster. His (1,r), (i.e., k = 1), clustering

algorithm, which corresponds to a classical, hierarchical,
non-overlapping single linkage algorithm was developed for this
study. All of these clustering methods have been evaluated in
this investigation.

5.5 Optimal Clustering Techniques for the Multiple
Target Problem

Bearing and frequency measurements, when viewed
as functions of time for an individual target, appear as long
chains for individual targets. These chains are rather smooth
and continuous when plotted for non-maneuvering targets.
Sincz, initially, only non-maneuvering trajectories are being
used for this study, it seemed as though the single linkage
methods would work best for this problem. Initial studies have
tended to verify this preliminary judgement.

To determine the best combination of techniques
for processing the data with the 'cluster analysis progranms,
simulated multiple 1linetracker data were generated which
contained measurements for all three of the targets involved in
scenario 1 (see Figure 4.1). The resulting multiple target
data were processed with each of the possible combinations of
processing options for data normalization, resemblance matrix
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generation, and cluster generation. Since simulated data were
used in this study, it was known a_ priori how the data should
be properly sorted. With this knowledge and with the
clustering results obtained from each of the processing
combinations, one could determine the optimal configuration.

Initially, one of the four clustering programs

from CLUSTAR was chosen to sort the data and non-standardized
data were used to generate the resemblance matrix
coefficients. Each of the seven similarity/dissimilarity
coefficients were used to generate an individual resemblance
matrix. Results from this data processing combination were
evaluated and then another clustering method was used to
re-evaluate the same resemblance matrix coefficients. The raw
data were wused in such a fashion until all possible
combinations of resemblance matrix coefficients and clustering
methods had been tested. As mentioned in Subsection 5.2, it
was determined that the difference in wunits for the raw
attributes, especially when time wunits were compared to
frequency and bearing units, was much too drastic for any of
the resemblance matrix-clustering methods to succeed.
Therefore, it was decided to examine the possibilities of
normalizing the attributes to improve the clustering results.

Next, alternative data normalizations were chosen
to pre-process the data. For a given data normalization,
resemblance matrices were generated for each of the seven
similarity/dissimilarity coefficients and the results from
processing these resemblance matrices with a given clustering
algorithm were evaluated. After all the resemblance matrix
options had been tested, a different clustering method was used

to process each of the resemblance matrices. After these

results were examined, another clustering method was picked and

the process was repeated. This gseries of tests was continued
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until all of the clustering methods had been evaluated. Then a
new data normalization technique was used to standardize the
data and the testing procedure was begun anew. This testing
procedure continued until all possible combinations of data
normalization, resemblance matrix generation, and clustering
procedures had been evaluated.

The results from these exhaustive tests lead to
our choice for the best clustering combination currently
available for sorting multiple target data. CLUSTAR's single
linkage clustering method outperformed all other methods when
it used a resemblance matrix consisting of Euclidean distance
dissimilarity coefficients for raw data that had been
normalized by method 5 to force all of the attribute values to

lie between O and 1. Several of the data normalization

techniques such as methods 3 and 4 showed promise, but none
performed as well as method 5. Similarly, some of the
resemblance matrix options such as the vector dot product and
coefficient of shape difference coefficients yielded reasonable
results, but none of their results were found to be as good as
results obtained with the Euclidean distance dissimilarity
coefficients. As was previously stated, the single linkage
clustering algorithm was expected to perform best of all the
clustering algorithms due to the straggly, chain-like nature of
the raw data. The complete linkage method tended to form
initial small clusters well, but these clusters were not

properly joined after these initial clusters were formed. None
of the other clustering schemes worked as well as the single
linkage algorithm.

After testing all of CLUSTAR's processing
capabilities, Ling's (l,r) algorithm was tested. Ling's i
algorithm uses Euclidean distances for dissimilarity
coefficients. He states (Reference 12) that the class of (1l,r)
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algorithms is identical to single linkage algorithms. In view
of these two facts, it was decided to normalize all of the raw
data to lie between 0 and 1 as above and compare the (1,r)
results to those from CLUSTAR's single linkage algorithm. The
clusters picked by the (1,r) algorithm were found to be
identical to those determined by the single linkage
algorithms. Because of the identical results in cluster

formations, it was decided that only one of these two
algorithms needed to be used in continuing our investigations.
CLUSTAR's single linkage algorithm was chosen and its specific
results are presented in the following sections.

5.6 Clustering to Remove Outliers from Single Target

Data

Outlier removal 1s a problem that is most
commonly associated with single target tracking problems.
Outliers are defined as points in a measurement set that do not
truly belong to the target being observed. Various factors can
lead to outliers occurring in a data set. For instance a
measuring device may actually detect a second target and
mistakenly associate the measurement for this target with the
measurements for the primary target. Other times, ambient
noise may dominate the actual signal such that a measurement is
generated for random noise rather than for an actual target
signal. Sometimes hardware or software problems can lead to
outliers being included 1in the data stream. Whatever causes
these outliers to arise in the data, the problem is to
recognize these points as outliers and then to eliminate them
from the measurement set. If one attempts to track a target
with data that contain several outliers, it becomes quite
likely that the tracker either will not converge onto a valid
solution or that it will eventually be thrown off track when it
attempts to 1incorporate the outliers into 1its estimates.
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Particularly for target tracking applications, it 1is very
important that outliers be recognized and removed from the data
so that accurate tracking solutions may be obtained for a
particular target.

In the past, several approaches have been tried
to alleviate the problems that arise when outliers occur in
target data sets. One approach has been to smooth the data by
prefiltering it before passing it on to a tracking algorithm.
Another commonly used approach is to initialize the tracker as
soon as possible with the 1initial data and then use the
measurement prediction feature from 1least squares tracking
algorithms to decide whether to accept or reject new data.
With least squares tracking algorithms, future measurements can
be predicted by the algorithm along with an associated variance
for this predicted measurement. One commonly used approach for
outlier removal is to reject any measurement that exceeds by
more than three or four sigma the predicted measurement from
the target tracking algorithm. Another possibility 1is to
merely ignore the outlier removal problem and process all of
the measurements as though all of them are valid observations.
If only a few outliers are contained in the data, tracking
estimates may not be too adversely affected by processing the
outliers along with the true data. However, when significant
numbers of outliers are processed by the target tracker, the
tracking solutions will tend to diverge from the true track of

the real target.

In this study, we  have investigated the
possibility of using single linkage clustering algorithms to
initially identify and eventually eliminate outliers from true
data for single target tracking applications. To test the
possibilities for applying cluster analysis to the outlier
removal problem, a simulated set of noisy data with random
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noise peaks was generated in the following fashion. First, it
was decided to generate simulated data for only target 1 in
scenario 1 (see Figure 4.1). For this data, the mean SNR as
determined at a distance one yard from the source was set to 76
dB. For the data that were simulated, the threshold level for

minimum signal strength was set low enough to assure that
frequency and Dbearing estimates were output for each
measurement update, regardless of whether these estimates were
true signal measurements or random noise measurements. Data
were generated in this fashion for all three observing sensors
in scenario 1. After generating the data in this fashion,
efforts were then made to sort the data from each sensor in
order to separate the true data from the random outliers.

The results from this preliminary investigation
have been rather encouraging. For the two buoys where both
true measurements and random noise measurements were present in
the data, the tree diagrams output by the cluster analysis
program indicated that the program could differentiate between
the true signals and the random noise. However, for the third
buoy, the signal was so strong that no random noise peaks were
found in the measurements. For this case, the clustering
algorithm separated the data into three separate clusters and
then joined them together at high values for the dissimilarity
coefficient. These three clusters proved to represent the
three different frequency cells into which the measurements
fell. As will be explained, it is felt that this unexpected
problem was created by the normalization technique wused to
pre-process the data forcing small differences to be magnified
many times greater than their true differences. Reviewing
these results, it appears as though the data normalization
question mneeds to be re-examined, but the overall results
obtained demonstrate success of the —concept and wmerit

discussion.
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Specific results for sorting the true signals
from the outliers in the data gathered by sensors II and III
will be presented here. The simulated data 1is presented 1in
Table 5.1 for sensor II. The corresponding tree diagram
produced by the single 1linkage clustering algorithm 1{is
presented in Figure 5.1. The data and clustering tree diagram
are not included for sensor III because the results were very
similar to those for sensor II. 1In all of these clustering
tree diagrams, the sample numbers of the candidate measurements
(objects) are found on the vertical axis and the associated
dissimilarity coefficients are found on the horizontal axis.
In Figure 5.1, the true measurements are found in the upper
portion of the tree diagram with tightly linked connections
between these data. In the lower half of the tree diagram,
loosely knit data are joined to the existing cluster at very
high 1levels of dissimilarity which 1indicates that these
remaining points have little resemblance to the points in the
upper portion of the tree diagram. Reviewing the tree diagram
in Figure 5.1, the true target measurements are found between
samples 5 and 1:5. Beginning with sample 9, the remaining
samples should be considered to be the outliers from this
measurement set because their frequency and bearing estimates
do not correctly correspond to a fairly smooth and continuous
curve as should be expected for this non-moving trajectory.
Similar behavior is found in the results for sensor III. From
observing the tree diagrams, obvious cutoff points can be
determined by big jumps in dissimilarity coefficients £found
after these points. The dissimilarity coefficients associated
with these cutoffs are about 0.151 and 0.110 for sensors II and
III, respectively. Furthermore, if one examines Table 5.I to
separate the data as suggested by this interpretation of the
tree diagram, one will indeed see that the outliers have been
appropriately sorted from the true measurements. The SNR of

84




Tracor Applied Sciences

TABLE 5.1
SIMULATED DATA WITH OUTLIERS
FROM BUOY II FOR TARGET 1 OF SCENARIO 1

- - - - -

- DATA MATRIX = = = - - =

INPJUT FORMAT

MATIIX NAME ¢ COMRG

TYPE QOF MATRIX : DATA

NUMBEP OF O0BJECTS : 19

NUMBER GOF ATTRIBUTES : 4

»ISSING vapye CodE -9999,30 -

cuTePutr QPTION : <

T JATA wATRIX .

OBJECT # ATTRIBUTE #
TIME FREQ cosS o SIN 8
1 2 3 4
1 50030 | 18,0500 «9827 -+1353
2 15,0033 | 150.5500 -« 360°% -.9328
3 25.0030 | 1505500 -.8212 -+5737
5 45,0033 | 150.5500 o4 321 -«9318
) 55.00337 | 153.5%0C -e3333 -.9429
7 55,3033 | 150.58C3 =.2(95 -.9778
3 75.0333 | 15C«55023 «7187 6982
9 85.30233 }151.6500 ~.9861 = 15040
13 95.5032 | 148.4503 «82789 -.56C9
11 J135.006233 | 151.8500 «8682 - 4963
12 }115.3033 | 15C.5500 -.4533 -.891u
13 }12543C30 | 147.75030 ~e3926 «9197
19 1135.03230 | 149.7500 -.27217 »5627
15 J145.,03830 | 150.55338 -.4358 -+.9031
15 }155.0020 j147.6500C 6849 « 7286
17 1165.3033 | 150.5500 «9436 -+ 3305
13 1758320 [151.0500 7220 69109
17 1185840323 | 150.150C «9767 ecllu
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the measurements in these data sets varied from nearly -10 dB
to over 4 dB. A five Hz frequency band was covered by a
linetracker containing fifty cells. Conventionally,
approximately a 0O dB threshold would be used to accept or
reject the measurements. This approach would have rejected all
of the noise measurements, but it also would have rejected some
true measurements. However, when no data were rejected by the
threshold test and the clustering algorithm was allowed to sort

the data, the clustering algorithm correctly chose data whose
detected SNR's were as low as =5 dB while it successfully
rejected random noise signals as strong as -1.5 dB. This
ability to 1intelligently compare data and choose true
measurements while rejecting noise seems to be a vast
improvement over thresholding data more to prevent false alarms
than to select all of the possible true measurements actually
produced by the signal processor.

A different response was found when cluster
analysis was used to sort the data gathered by buoy 1 for
target 1 of scenario 1. Target 1 traveled very close to buoy I
throughout the length of this short scenario, so the
propagation losses were never very large for this setting.
Surprising 1initially, the data, 1listed in Table 5.1II, were
grouped into essentially three distinct clusters as can be seen
in Figure 5.2. After reviewing the results, it was found that
all three clusters coincided with the three distinct frequency
measurements found 1in the data. The changing dynamics and
geometries of this scenario forced the Doppler shifted
frequency to appear in three different frequency bins during
the observation period used for this scenario. Looking at
Figure 5.2, samples 2 through 7 appear as one tightly knit
cluster in the wupper portion of the tree diagram. The

frequency estimates for all of these samples were 149.55 Hz.
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TABLE 5.1II

SIMULATED DATA WITH OUTLIERS
| FROM BUOY I FOR TARGET 1 OF SCENARIO 1

------ DATA MATRIX - = - - - o ,

INPUT FORMAT :

MATRIX NAME : DMRG

TYPE OF MATPIX : DATA
NUMBER OF OBJECTS ie

NUMBEP OF ATTRIBUTES : 4

FISSING VALUE COCE : -9999,.7g

CUTPUT QPTION 2

=~ = - = - DATA MATRIX - = =~ = - =

1 2 3 4

1 5.0000 149.65Q0 +5999 -.0149
2 15.0000 149,5539 e9971 .0764
3 25.000C 149.5503 .9865 $1641
4 35,0000 149.55G0 .9775 «2109
5 45.0000 145.550C .9618 *2736
6 55,0000 145.5503C s9u52 e3262
?  65.0000 149.5535 .5u81 .31a0
8 75.300C 145.45C" «9175 v3977
9  85.000C 149.45G0 «9027 +4302
10 95.0000 149,45C0 «91212 +4096
11 105.0000 149.4500 .87112 «4908
12 115.3C0C 149,u500 <8561 .4198
1T 125.3000 149,450z .90S57 e4239
L4 135.3000 14v.4530 +8645 c8565
1S 145.3000 146,4500 .8640 +5035
16 155.3C00 149,4532 .8703 4926
17 165.3C00 149.45G2 e5u82 $5297
18 175.2000 145,45350 “3747 4347
1§ 185.3097 149.4537 «7968 6243
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Following this cluster, a solitary cluster consisting of only
sample 1 1s found. The frequency estimate for sample 1 was
149.65 Hz. Following this cluster, the remaining samples 8
through 19 are found grouped into one large cluster. For each
of these samples, the frequency estimates were 149.45 Hz. All
three clusters are eventually merged into one cluster as should
be the case for these data, but the clusters are joined at such
high levels (approximately 0.270) relative to the other
clusters, that one would probably assume they should not really
be joined together. Unfortunately, an examination of the data
shows that they are all true measurements and belong to the
same target.

Intuitively, this data separation is
disconcerting because we want the clustering algorithm to sort
outliers but not to falsely sort the data from one source into
multiple data sets. Careful examination of the raw data in
Table 5.I1 would tend to indicate that the problem could 1lie
with the data normalization technique used on the raw data.
For the frequency and sin 2 raw data from buoy I, the maximum
difference between any two samples is only 0.2. Recalling the
normalization method used to pre-process the data, this 0.2
difference appears in the denominator of the normalization
equation. Instead of scaling any differences to be smaller,
this denominator effectively magnifies any differences by a
factor of five. On the other hand, if one reviews the raw data
for buoy II in Table 5.I, the differences between the maximum
and minimum values used by the normalization equations equal
approximately 4.2 and 1.97 for frequency and sin 3,
respectively. For buoy III, these differences will be
approximately 3.9 and 0.7 for frequency and sin 8,
respectively. Buoys II and III tend to normalize the raw data
such that the numerical differences for the attributes are made
smaller. Conversely, the differences for buoy 1 are magnified
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after normalization because all of the raw data already have
small variability. With common normalization scale factors for
each attribute for all of the buoys, the results from Buoy I
would be much better than that now seen in Figure 5.2. In
fact, the true data cluster for Buoy I should be much tighter
knit than the clusters of true data for the other two buoys.
This hypothesis for explaining the discrepancies in the results
for the three buoys has not yet been tested, but it makes sense
intuitively. Clearly, the current data normalization technique
seems to have some problems, but the single linkage clustering
algorithm, nonetheless, shows promise for solving the outlier
identification and removal problem.

5.7 Clustering to Sort Multiple Target, Multiple

Linetracker Data

After examining the possibility of using cluster
analysis to solve the outlier removal problem associated with
single target data, the use of cluster analysis to sort data
for the multiple target tracking problem was investigated. For
the multiple target problems where only passsive DIFAR data
will be used, no a priori knowledge of how many targets are
present or what measurement values to expect will be
available. An approach such as cluster analysis which 1looks
for natural trends or natural groups without assumptions could
be a reasonable approach to this problem. After noting the
success with sorting simulated weak signals from random noise,
a natural progression would be to use cluster analysis for data
sorting in the multiple target tracking problem.

In this subsection, only simulated multiple

linetracker data as described in Subsection 4.2 were used for
the data sorting study. The 4-tuples consisting of the time
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tag, frequency estimate, and the cosine as well as the sine of
the bearing estimate were used to describe each detected
signal. Idealized 1linetracker data were simulated which
ignored the possibility of signal interference from other
sources when the measurement estimates were generated. In this
section, the merged, multiple target linetracker data for each
sonobuoy are examined to determine whether cluster analysis can
be used to separate this data into distinct sets of individual
target data. The raw data and clustering tree diagram for
sonobuoy I of scenario 1 are included in this subsection, but
the raw data and tree diagrams for sonobuoys II and III of
scenario 1 as well as those for all three sonobuoys of scenario
2 have been excluded from this report to streamline the
following discussions.

5.7.1 Multiple Linetracker Cluster Results for Scenario
1 - The results for each of the three sonobuoys from scenario 1
are discussed here. All of the data were generated in the

normal fashion with a threshold of 0O dB used to determine
whether to accept or reject a measurement estimate. Each
target in the simulation transmitted only one narrowband tone
at 150 Hz. Originally, a mean SNR value of 76 dB as measured
one yard from the target was used to generate the
measurements. However, difficulties were encountered in
gathering sufficient data from all the targets for the
clustering algorithm to effectively sort the data, so the
transmitted SNR 1level was increased to 80 dB for all three
targets. Simulated linetracker data for the targets were
generated and then merged. In all further discussions, a
sample will be denoted as an outlier when 1its frequency
estimate varies too drastically to fit 1in the rather
continuous, chain-like curve expected for non-maneuvering
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targets. When necessary, drastic changes in bearing
characteristics have also been considered in labeling a sample
to be an outlier.

The simulated multiple target data for buoy I is
presented in Table 5.III. A three-dimensional representation
of these raw data is provided in Figure 5.3. 1In this plot, the
curves vrepresent the true, uncorrupted measurements that
correspond to the actual dynamics and geometries of scenario
1. The pluses found close to these curves represent the
simulated, noisy, non-Gaussian measurements produced for this
simulation. The corresponding tree diagram output by the
cluster analysis program is shown in Figure 5.4.

Looking at the tree diagram 1In Figure 5.4 for
buoy I, one can see that there exists many different levels at
which single data points and small clusters are joined.
Evernitually, all the clusters are linked into a single cluster.
However, if one goes down a few levels from the level where all
of the data are linked, the data sets for each individual
target may be found in three separate clusters. After looking
at the clusters and knowing from our data simulation which data
points belong together, it is evident that the data for target
2 are contained in the upper portion of the tree diagram
between samples 34 and 1. In the middle portion of this tree
between samples 24 and 5, the data for target 1 are found.
Data for target 3 are found in the lower portion of the tree
diagram between samples 32 and 2. The very last sample, number
38, nominally belongs to target 3. However, the clustering
tree diagram 1indicates great difficulty was encountered in
linking this sample with any of the other data. A
re-examination of the data shows that sample number 38 contains
a frequency estimate that agrees with the adjoining £frequency

93

i
]
|
]
i




TABLE 5.III

MULTIPLE LINETRACKER DATA FROM BUOY I OF SCENARIO 1

- - = e =~ = DJATE MATRIX - - - - - -

IN?JT FrRvwat

MATRIX NAME 1 Pard

TYPE QOF MATRIX : DATA

NUMRER OF QPJZICTS 4o

NUMIER OF ATTRISUTES @ 4
MISSING wvalJdi CoLe ¢ -“Q3G69,70
SUTRUT OPT 1SN : Py

'
]
]
]
]

- JATA MATRIX - = = =~ - -

i ° z o
1 30,332 lb9e€342 l.c200 -elTul
z 35,0722 1%Ca.1ifCC 6132 W 755G
3 15,0005 149.65C0 «$580C -.0633
4 15.3C33 1v5.55C0 5561 L0581
5 25.5037 169.%500 5959 C=a0167 -
5 25,0323 1t3.55C3 L9861 YYD oo
7 23.00232 15C.13C00 LTIl 6220
3 73,2022 14543222 5767 ellus
3 43.050233 1489.952C v713 «2361
i3 US..030 14945502 ev62°¢ $ 2721
11 STL,0030 148,580 0 L9967 L1777
12 S3.0320  149.25CC eJucu WI1772
' 13 55..722 1%2.41%50C A T30
| 14 5340222 le9.vioy L5 W luTl
: 15 53,5057 149.583C fGub ] 3235
is T35.0235 le9.4TCn 3T .I752
! 17 75.C032 14944830 S0I0 e 3349
i i “3403025  1w9.8850C LS5ES W Iolb
; V9 PL L0020 luv.siil I B e lu”
! o PI,I022 0 1e3.-352 S Sl sulet
i i 7345633 € .u®3C 55536 .Tuza
: 120 172%.0C033  149¥.350C L9577 e l8e2
* 23 10G3.00377 (69 .eS00 e L P 88T
. 24 1300727 i4demcecCl RERAN! e llas
3 SR lliellLs 1eS.efll ehHuTh euul”
<>  iideo3I3 ifLecCZoz il97 EEN
27 125.0033 149.8503 Y665 2566
38 125.0020 149.45C2 «8962 «4375
29 125.0070 153.06500 eb3UA .7728




[GRENTRR LR I PAR VAT SN V SIS B A P
Ut r~ T3 D 3 L) 4y ol g~
NOEFORLE NN & B ClNVo Il SR ARNY SR i
— T L 0D Y T
e o o o 8 % o o o &
1M..w Pyt~ (D0, 3 —~ Uy
o Loy 3 () X )G oy -a ity
u Jra ot 03 D D e
— [o AR VR R BEEo R o NS S S S
- . . L - L] L4 - - .
o e
Q
| @)
' . , . N .
) Q) ryey )y 1Yo 2oy 0y 03
1 ey Y0 7oy DO
[V R VR RV VA VY TN R N I A A
n T, 03y 03 30
H ® o o » & & = s o
— [0 30 20 oF IS NN o N SR e AR S
. BN SRTANN . BNVA N AR SRR 5
vy P I B B e I e IR I |
23 CY T e, £330 L) 2y £ 1)
-1 Yy 3y t, OO0y ry o)
[~ [ @I VRN oo B B o BN < BN ANE QRN A B 49 J
A SR NEEES H B B S L D TS A |
T . . = . . . . a [ .
[V BN TR e BV RN Yo RNT2 NNV IR TARNVE RIS )
LCATIE SO Sa T S SN SR VR BT A T VA NS
— e e rA et A ) e A
(SRR VI o0 NS ST o BN o B SRS ORI ]
I ZA TR I AN P T o T La T A AT LA TR SO TN 20 1
e Aamidtey




N 1 oTaeuady Jo
Omu<wﬁ% 1 aosua§ Lq paaaasqQ s3adae], @21yl 1B 103 30[d

awt], sn dutiedqg "sA Aousnbaiy pole[hwig pur anyy - ¢°6 2an38714

(s@92183q) 3Jurieag

96

SIXV 9Nlyv3g

¢ viva 3nyl ¥ m
2 viv0o 3Inyl ™ 2
| viva 3Inyl ® o

SIXY IWIL Y )
Sixy ‘0344 © N

aN3931




T OI¥VNUDS 40 1 A0NY WOdd VIVQ

YAAOVILANIT HTdILTIOW Y04 WVIOVIA JAYL HNI¥ILSATID - %' ¢ ®an3ig

11 1----
11 L R D P 1
11 I--
I-- 1 LR St
1 1----n-
! M et 21
1
1 R R it ¢n
1 1
I 1 R R E R L PR L
[---scmemeo- [-sv-un--
1 I I Ir-emmecmeea - €
1 1 i---
. ! 1 L e L 61
lemmemmeen o o
I R e LR TR £2
1 oFaeuadg jo 1 Long A 1 1-
woxj z 398ae] 103 ele(Qq I L R i ¥2
{ t---
. Toeooms LR €2
!
| e ts
1
1-1---ccsemmmcecanen £n
11
1 R e Chn
~l
[ e DT T 1
1--
ﬁ Jemmemmmammanan ng

L S S T T 1 e e S T T R e R R Rtk R Y
B T I N

Dolidl N INAVA NNHT (YA
e TN E N INTVA WAWINTW
oY TETS T M IW YNTEILSNY)
SONOTIJS0 DI M ING0D

i TNOT1d0 INNOD 3NON
JAeE T Tuwn 36

Jeowr, xTdlvke JINVIVWRIS DY

S R ET B R

vy s0dey

. e




panuljuo) -- #°'¢ 3In3Jrj

R 1 !

1 ofxeuads§ jo 1 Aong fmommmmm e aee
moiy ¢ 3I98ae] 103 eieq 1

b et bt St ey e b

1 oraeusdg Jo 1 Kong A
wo13j T 398xe] 103 eled

! 1--n--

f--nmmun

(panurauod) z 31991e], 103 eieq N

B e e LR B B Bl BN | 1

Pt o e v G e Bt M e St vy g Bt md 50 P St gt i Sme e el o e g Bt Pt Pt e at d et bt g Sed gt omd P pg By

e e e et ceaan [ 27

B R 1

|||||||||||| cececrm e e
R I §
1 H e 1|

Permmmoa ———eeao
B T LT 1
S B PR T
T pepupp T ¥
e e £
T . e w2
................. PO |
||||||||||||||| B i I IR NPPRPNE §
oo cmmeme - “eeeme—a--- R
ql:
1 1---~-- bR P L L

Juj 0008

98



papniouoy -- % G dIN3TJI

»

99

glte® aoez* 281° L2 Inte Lzve 601" 160° §10° LMt 910 LR R cee:

"ldl’|l|l0l0llo|1tlo|1||o|0||.|l||ol|||o|||xoll||o||||o|l||01|l|.llllo||||ollllo||||.||0|o|||l»l|llo||l1ollllonlllollllo
—nlu-ulncunuuunnnnlntnnuﬂﬂdZunln|n|||lunu|:||||:||||||:'|n|||;:u«ru:-||||||vnnuncu|u|4|u||;-uuu:luunluvvunun 33

| R ity el

.t e e Gy
—
~
Ll
]
[}
'
)

1
Ll
1
]
1
)
1
'
1
1
1

I 1 —||||VI||n||||l||||v||||||||||||v||||a|||troulvlll [

| R 1 (penuriuod) ¢ I Y--momommrmm o m s

“ " " 3081e] 103 ®IRQ “ ! Jemmmmmmmmmmmmmmmmsmmsesessesssossoossssnsnoooses 1
I 1 1 1 Lom e mmmmmmemmmeemeseasesssmssoesmessemsssoceosaosos Gh
i 1 ! 1 [

1 1 | [-cmemmemmmmnemme s [emmmmmcmesommcmecsammooceosmssmmossososmennos §2
1 1 1 1 1

1 1 1 [~mmmom-- P i R
1 1 1 1 R

2w 10321




Tracor Applied Sciences

estimates for target 3, but a close look at the cosine and sine
of the bearing estimate for sample 38 shows that this bearing
estimate differs substantially from the adjoining bearing
estimates for target 3. Looking at the clustering tree diagram
and the actual measurement values, it appears as though sample
38 should best be labeled as an outlier and removed from the
data set. When sample 38 is eliminated as an outlier, the tree
diagram can then be interpreted as correctly sorting the data
into individual target data sets when a threshold level of
approximately 0.140 1is used to halt the 1linking of the
clusters. If clusters are linked for dissimilarity coefficient
values smaller than 0.140, the data will be correctly sorted
into three different data sets, each of which corresponds to
one of the three targets used in this simulation.

The tree diagram clustering results for the
merged linetracker data for buoy II of scenario 1 exhibited the
same behavior found in Figure 5.4 As always, the tree diagram
showed all data to eventually be linked into one conglomerate
cluster. However, when the tree diagram was reduced to the
point where only three smaller clusters plus one data point
were found, the data for each individual target were found to
be correctly sorted. In the upper portion of the tree diagram,
data for target 3 were found. Following this clump, the next
six samples formed a cluster which contained the data for
target 2. Except for the last sample in this tree diagram, the
remaining data were crouped into a cluster of data which
corresponded to target 1. Again, the last sample appeared to
be an outlier, so it was eliminated rather than included with
any of the other data. The frequency estimate for this last
sample corresponded to the data for target 2, but the bearing
estimate was so poor in comparison to the rest of the data for
target 2 that it could not be included into this data set. If
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a threshold of approximately 0.182 for the resemblance matrix
coefficient was used to decide when to stop joining clusters

together, the multiple target 1linetracker data for buoy II
would be correctly grouped into three sets of data. Each of
the three clusters corresponds to an individual target. The
last sample in the tree diagram is an outlier which should be
eliminated from this data stream.

Lastly, the results from scenario 1 for buoy III
will be analyzed. Reviewing the tree diagram for this

sonobuoy, no obvious outliers were found in the data. If one
looked for the clustering level where all the data are grouped
into three separate clusters, the correctly sorted individual
data sets for each of the three targets in this scenario are
found. Looking at the results from this tree diagram, it could
be seen that the threshold value appropriate for this case
would be approximately 0.130 for the dissimilarity
coefficient. In conclusion, if these clustering results are
appropriately analyzed and interpreted, the cluster analysis
approach has been shown to provide a viable means for sorting
multiple linetracker data into single target data sets for the
multiple target problem.

5.7.2 Multiple Linetracker Cluster Results for
Scenario 2 - The results from using cluster analysis to sort

multiple linetracker data for scenario 2 are discussed in this
subsection. Recall from Figure 4.2 that this scenario
congisted of two targets that traveled parallel paths with
identical velocities. This trajectory was expected to create
anbiguities particularly for buoys I and III due to the strong
similarities 1in both Doppler shifted £frequency and bearing
estimates that would be detected by these sensors. From this
pathological case, some bounds could be established on the
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sensitivity of the data sorting by cluster analysis to strong
similarities 1in signal characteristics from two different
sources. In this section, only the results from successful
data sorting runs will be presented. As will be detailed in
the succeeding discussion, signals from two different sources
that are any more similar than the bounds established here will
most likely be inseparable by the cluster analysis approach to
data sorting.

The case where successful data sorting was first
accomplished for buoy I occurred when the unshifted center
frequencies transmitted by the two targets were separated by
0.5 Hz. Attempts were made to sort data when the center
frequencies were separated by 0.0, 0.1, 0.2, 0.3 and 0.4 Hz,
but the single linkage clustering algorithm could not suitably
sort the data for these five cases because there was too little
difference in the attributes between the two signals. Since
the bearings could not be changed for this scenario, it was
decided to vary the transmitted center frequency for the two
targets until the data could be suitably sorted. The upper
portion of the tree diagram for this case contained the sorted
data for target 1. All but the 1last three samples of the
remaining half of the tree diagram contained the data for
target 2. The last three samples in the tree diagram were
again considered to be outliers and were eliminated from the
data stream. The dissimilarity coefficient value associated
with this cutoff level was approximately 0.130.

Not so surprisingly, the clustering results for
the multiple linetracker data from buoy II of scenario 2 were
different from the results presented above. For buoy II, the
two targets are moving toward the sonobuoy rather than past it
as 1s the case for buoys I and III. With the targets moving at
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this sensor at the same speed and same heading, the Doppler
shifts will be the same but the separation in the bearing
measurements will be 1larger than for buoys II and III. For
buoy II, a difference of only 0.1 Hz between the transmitted
center frequency values for the two targets was sufficient for
the clustering algorithm to sort the data. When there was no
difference in the transmitted center frequency values for the
two targets, the clustering algorithm failed to adequately sort
the data. The upper half of the tree diagram for buoy II
contained all of the data for target 1. The remaining lower
half of the tree diagram contained the data for target 2. For
this tree diagram, there are a few samples that were more
dissimilar than the other samples in the two clusters, but no
obvious outliers could be found. For this tree diagram, a
threshold cutoff of approximately 0.292 would result in two
well defined clusters which contained data for the two targets
found in scenario 2.

The results from clusterng the data for sonobuoy
IIT were expected to be fairly similar to the results for
sonobuoy I, and this proved to be the case. The transmitted
center frequencies for the two targets had to be separated by
at least 0.4 Hz for the clustering technique to properly sort
the data. This is 0.1 Hz closer than the results from buoy I,
but this difference is not considered to be significant. Once
again, when the data are reduced to two clusters rather than
one, each of the resulting clusters contains data for an
individual target. A cutoff point of 0.133 for the
dissimilarity coefficient would result in the correct sorting
of the data into two sets of individua! target data for buoy
III.
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5.7.3 Conclusions from Using the Single Linkage
Clustering Algorithm to Sort Simulated Multiple Linetracker
Data - The results from applying cluster analysis techniques to

data sorting for multiple 1linetracker data have been quite
encouraging. For scenario 1, three identifiable clusters which
contained the data for the three targets could easily be found
if the observer knew in advance to search for only three
clusters. The results from the second scenario indicate that
there are limitations as to how similar the data can be before
the clustering algorithm can successfully sort the data into
individual target data sets. Either the frequency or the
bearing measurements or both of these measurements must have
identifiable differences that are not lost in random noise
before cluster analysis can succeed in separating the data.
Unfortunately, no hard fast rule for determining a threshold
level can be established from these results to decide when the

joining of clusters should be stopped by the single 1linkage
clustering algorithm. Simply for the data sorting problem,
this threshold level varies from as low as 0.129 to as high as
0.292. In the outlier removal study, this threshold level
varied from 0.101 to 0.270. Obviously, this threshold wvalue is
a dynamic parameter that depends strongly on the data
normalization technique and that now varies from one
application to the next. Without any means to determine or fix
this threshold value a priori, it is impossible to automate
this cluster analysis procedure so it could be used without any
human decisions being required. The information is available
in the clustering tree diagrams as has been shown in the
previous discussions, but the question of automating and
properly interpreting the results from this process when no
a priori information is available for the data still remains a
very troubling problem.
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5.8 Clustering Frequency Spectra Data: Establishing

Frequency Tracks

After seeing the qualified success obtained from
using cluster analysis to remove outliers and sort multiple
target 1linetracker data, it was decided to examine the
possibility of  using cluster analysis for one more
application. The single 1linkage algorithm might be used to
analyze simulated DIFAR frequency spectra to separate the
signals from the noise found in the spectra. If so, the
clustering approach could recognize either single tones or
multiple tones found in the frequency spectra instead of
recognizing only the single strongest tone as the MAX-OR
processor does. If multiple signals could be recognized with
this approach, then the need for multiple linetrackers to track
multiple frequency 1lines could be eliminated. Furthermore,
gsome of the restrictions might be relaxed on how close these
multiple tones could be in the frequency spectra before they
could be separated. The preliminary results have been ﬂ
encouraging and have shown that this approach can sort the
signal data from most of the random ambient noise. However,
the data could not also be sorted into individual target sets
with this approach.

5.8.1 Results from Clustering Multiple Target Frequency
Spectra for Scenario 1 - The table of the simulated multiple

target frequency spectra data for buoy I of scenario 1 1is
presented in Table 5.IV. The first column in this table is the

sample number assigned to that prospective measurement. The
next column, labeled "1" in the table, is the time tag of the
measurement. Following the time tag is the frequency bin

nunber for the simulated measurement. The last two columns
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TABLE 5.1V
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contain the cosine and sine, respectively, of the bearing
estimate associated with the prospective measurement. The data
for this buoy were generated in the manner described in
Subsection 4.3. The associated three dimensional plot of the
omnidirectional power versus frequency as a function of time
for the three targets observed by sensor I of scenario 1 is
shown in Figure 5.5. For this simulation, a five Hz frequency
band was covered by 50 cells from a comb filter bank. This
observed frequency band and the quadruplet of attributes
assigned to each prospective measurement will remain the same
for all the simulated mwmultiple target frequency spectra
generated for both scenarios 1 and 2. Note that multiple
frequency estimates are generated at each time, and that they
can lie anywhere within this five Hz band. As for Subsection
5.7, outliers were determined primarily by unacceptable
discontinuities in the frequency estimates as functions of
time. Where it proved to be useful, drastic wvariations in
bearing estimates were also used to 1label data samples as

outliers.

The tree diagram of the single linkage clustering
algorithm output for the data in Table 5.1V is presented in
Figure 5.6. The true signal data for this scenario are all
found in the upper portion of this tree diagram. All of the
real signal data are found between samples 110 and 70 in the
tree diagram. From samples 79 on down, only random ambient
noise 1is found. Between samples 110 and 70, two obvious
outliers are found in samples 40 and 102. Other possible
outliers may exist in this data, but these two samples are the
most obvious ones because their frequency bin numbers do not
correctly correspond to any of the true data for this time
frame. Closer examination of Figure 5.6 shows clusters of
partial data sets for each target. The data between samples
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Figure 5.5 - PLOT OF SIMULATED MULTIPLE TARGET FREQUENCY
SPECTRA FOR BUOY I OF SCENARIO 1 (3 TARGETS)
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110 and 75 in this tree diagram consist of a partial data set
for target 1. Next, from samples 47 through 2 are found most
of the data for target 1. However, the last two samples of
this cluster, samples 1 and 2, are shown really to be more
tightly associated with the next cluster of data which contains
the remainder of the data for target 2. The cluster of data
between samples 9 and 76 contain the remainder of the data for
target 2 except for outlier sample 40. The remainder of the
tree diagram that contains the real data, samples 50 through
70, has the signal data for target 3. Again, sample 102 should
be excluded from this last cluster because it really 1is an
outlier. All of the true measurement data are found in the
upper portion of the tree diagram up through sample 70, but the

previous discussion has shown that cluster analysis only
gsucceeded in separating the signals from the noise. It did not

properly sort the data into individual sets for each target.
To properly separate the signal data from the noise, a
threshold value of approximately 0.075 is needed.

The clustering results from sorting the simulated
multiple target frequency spectra for sonobuoys II and III of
scenario 1 yielded very similar results to those seen in Figure
5.6. For both sonobuoys, the upper half of the clustering tree
diagram contained the real data for the three targets. The
other data samples were found to be random noise. In neither
case were the true data properly sorted into individual target
data sets, but the true measurements for all the targets were
properly sorted from most of the noise. For sonobuoy II, a
dissimilarity coefficient cutoff value of approximately 0.104
would result in all of the true data being separated from all
of the noise except for seven outliers which appear in the data
sorting. If a threshold wvalue of 0.090 was set for the
clustering tree diagram for sonobuoy III of scenario 1, the
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resulting data set would contain all the true measurements for
the three targets plus eight known outliers. Again, the data
were not properly sorted into individual target sets, but the
single 1linkage <clustering algorithm did sort the true
measurements from most of the noise.

5.8.2 Results from Clustering Multiple Target Frequency

Spectra for Scenario 2 - Finally, the single linkage clustering

algorithm was tested with simulated, two-target frequency
spectra data from scenario 2. For this simulation, a 0.2 Hz
difference in the transmitted center frequencies was used to
insure that there would be no overlap between the two signals
in one frequency bin. As was the case for the data from
scenario 1, the clustering approach was fairly successful in
separating the true signals from the ambient noise, but it did
not adequately separate the data into individual target sets.
The results for the three sensors from this scenario are

described in the following paragraph.

The clustering tree diagrams for each of the
three sonobuoys of scenario 2 again sorted the simulated
frequency spectral data so that all of the true measurements
were found in roughly the upper half and the noise in the
bottom half of the diagrams. However, in no case were the true
measurements properly sorted into individual target data sets.
Algso, the tree diagrams associated with sensors II and III
included at least a few outliers in the separated measurement
set. Only sensor I completely eliminated any obvious outliers
when a dissimilarity coefficient value of approximately 0.060
was used to separate the true data from the noise. For sensor
I1 of scenario 2, a threshold 1level of 0.065 for the
dissimilarity would separate the true data from most of the
noise, but would result in six known outliers showing up in the
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measurements. Finally, a cutoff value of 0.050 would be needed
for the dissimilarity coefficient for sonobuoy III to separate
the true measurements plus two outliers from the remaining
random noise. Once again, the measurements were not properly
sorted into individual target sets.

5.8.3 Conclusions from Using the Single Linkage

Algorithm to Sort Simulated Frequency Spectra Data - The

results from applying the single linkage clustering approach to
data sorting at the frequency spectra level have been both
encouraging and discouraging. The encouraging results have
been that this approach can separate the multiple narrowband
frequencies from most of the ambient noise found in the
frequency spectra from the simulated DIFAR processor. One of
the discouraging results 1is that this approach does not
suitably sort the data into individual target sets. Another
discouraging result is that once again, no hard fast rule for

adopting a clustering threshold level can be readily chosen by
reviewing the results of these studies. For scenario 1, the %
threshold levels varied from 0.075 to 0.104. For scenario 2,
these levels wvaried from 0.047 to 0.065. Some of the
discrepancies in clustering threshold may be caused by the data
normalization method employed. Perhaps this threshold level is
a dynamic factor which must be allowed to vary from one problem
to another. The question is what type of dynamic relationship
can be assigned to the program or what type of normalization
scheme should be used to allow the results to become automated
rather than depending on human interpretations to pick the
optimal clusters. Despite the shortcomings of this approach,
it now appears as though this technique can be used to pick
multiple peaks from a DIFAR processor so that data sets of the
form used in Subsection 5.7 could be gathered for multiple
target scenarios. Should this be the case, then the results
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from Subsection 5.7 would indicate that the data could again be
clustered to sort out outliers and to separate the data into
sets of individual target data. These results would seem to
suggest the need for a two stage clustering scheme. The first
stage would separate the multiple target signals from the noise
and the second stage would sort the data into individual target
sets.

5.9 Conclusions on the Use of Cluster Analysis for

Data Sorting in the Multiple Target Problem

Generally speaking, the hierarchical,
non-overlapping single linkage clustering algorithm chosen for
this study has shown potential for solving the data sorting
problem associated with multiple target tracking. The single
linkage cluster analysis program has been used to investigate
three facets of the data sorting problem. One study
investigated the use of cluster analysis to solve the outlier
removal problem. Another study was concerned with the question
of sorting multiple 1linetracker target data into individual
target data sets. The final investigation concerned the use of
this single 1linkage clustering algorithm to sort nultiple
signals from ambient noise found in frequency spectra data.
Qualified success has been found in using the cluster analysis
approach to solve these problems.

The major problem associated with the clustering
algorithm concerns automating the program to pick the optimal
gset of clusters and to output these results in more useful
formats than the tree diagrams found in this report. As the

tree diagrams have shown, the clustering algorithm continues to
link the data until all points are joined into one conglomerate
cluster. The wuseful information to be gathered from the
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clustering tree diagrams falls at intermediate clustering
levels rather than at the final level. No fixed criteria have
yet been devised to automatically decide when the linking of
the clusters should be stopped. Since simulated data were used
in these studies, the optimal results were known a_ priori and
an appropriate clustering threshold level could be found. With
real data, this will not be possible. In general, the
following two observations can be made concerning the choosing
of optimal clustering levels. First, the good data were always
found in the wupper portion of the tree diagram with most
outliers or random noise points being found at the bottom of
these diagrams. This 1s true because these trees are arranged
in order of increasing dissimilarity coefficients. Secondly,
the optimal clusters containing the true data were usually much
more tightly knit than the clusters which either joined data
from other targets or which included outliers into the
cluster. Perhaps some scheme can be devised which gradually
picks successively lower clustering levels in the tree diagram
until some optimal clusters are found. Great emphasis,
especially for separating signals from noise from the frequency
spectra and for outlier removal problems, should be placed on
analyzing the upper portion of the tree diagram. Another
possible improvement would be to standardize the data
normalization approach so that all of the raw data from each
buoy were normalizéd by the same scale factor. With such a
common scale factor, it may be possible to establish a fixed
threshold level for the clustering results. Regardless of how
it 1s accomplished, some criteria must still be developed which
determines how much of the upper portion of the tree diagram
should be analyzed and how this cluster should be further
sorted into clusters of individual target data.
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In reviewing the results of sections 5.6 through
5.8, it seems that the input data processing for the multiple
target problem should employ the following approach for DIFAR
data. First, a rather wide frequency band should be chosen for
observation which includes all of the possible narrowband
signals of 1interest. Next, some threshold test should be
employed which accepts most of the signal data plus some noise
data but which rejects most of the random ambient noise. For
all data that pass the threshold test, a &4-tuple of attributes
should be estimated which includes the time tag, the frequency
estimate or the frequency cell bin number, and the sine and
cosine of the bearing estimate. This set of attributes for all
the prospective signal data should then be analyzed by a two
stage clustering algorithm. The first stage of this clustering
phase would be used to separate the signal data from most of
the remaining random ambient noise found 1in the frequency
spectra. Assuming that the output from the <clustering
algorithm has been suitably automated, the resulting signal
data would be separated from the noise and saved for another
round of clustering. The second clustering would serve two
purposes. First, it should remove the remaining outliers from
the signal data. Second, the algorithm should decide how many
targets are present and assign optimal clusters of data to each
of the targets believed to be present. It is felt that some
criteria can be developed to automate the clustering algorithm
to perform these tasks, but as yet, no obvious method has been
found. Perhaps with a proper data normalization scheme, some
of the problems concerning the automation of cluster analysis
output can be more easily solved. With futher development, it
is strongly felt that cluster analysis can be used to identify
data, determine how many targets are present, sort the data
into individual target sets and eliminate any outliers that do
not truly belong in a given data set.
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w 6.0 RECOMMENDATIONS FOR FUTURE INVESTIGATIONS

Upon completion of the current contract, it is
evident that considerable work remains to be done in the area
of multiple target tracking. In connection with this, several
future tasks have been identified. The first two of these
tasks are concerned with improving the capability to sort
multiple target data. Other tasks are concerned with utilizing
the sorted data properly to track the multiple targets
described by the data. These proposed tasks are generally
presented in the required order for their logical development.

A few concluding comments address long term work on multiple
target tracking.

6.1 Continued Search for the Optimal Clustering
Technique

First, it is felt that the search for the optimal
clustering algorithm must be continued. This initial study has
shown that CLUSTAR's single linkage algorithm and Ling's (1,r)
algorithm were the best of the algorithms tested for the data
sorting problem associated with multiple target data. Both of
these algorithms are hierarchical, non-overlapping, single
linkage clustering algorithms. From the results of this study
and from heuristic reasoning, it is believed that either a more
generalized, hierarchical and non-overlapping single 1linkage
algorithm or an overlapping, non-hierarchical single linkage
algorithm may be better suited for the data sorting problem. A
brief discussion of these ideas follows.

One possible investigation on this topic concerns
the development of Ling's generalized (k,r) clustering algo-
rithm for k # 1. Ling points out (Reference 11) that this
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algorithm should best be thought of as a generalization of the
conventional single linkage algorithms. The k and r control
parameters are used to determine the level to which objects or
clusters should be linked by the algorithm. This (k, r) algo-
rithm merges data into groups of k members that are all linked
within some distance r of the other members in the group. Both
k and r may be user inputs that would be used to determine how

much the data should be linked before the clustering process
would be stopped. It is believed that the (k, r) algorithm is
a necessary generalization of the single linkage algorithm
which should be easier to control and automate and which could
prove to be more useful for the data sorting problem than the
conventional single linkage algorithm.

A second clustering algorithm which should be
investigated is a non-hierarchical, overlapping algorithm.
This algorithm 13 referred to as the Moody and Jardine Bk
algorithm (Reference 8). It too 1s a generalization of the
single linkage algorithm. For this algorithm, the k parameter
is used to define the degree of overlap that is to be allowed
between two different clusters. For an overlapping clustering
algorithm such as this one, data are not always assigned to
only one cluster. Instead, data that cannot be clearly sepa-

rated into either cluster are placed into both and the clusters
are allowed to overlap at this point. This type of algorithm
may prove useful for pathological cases such as that found in
scenario 2 of this study when the data from two targets are so
similar that they cannot be readily separated. Rather than
assign the questionable data points to one target or the other,
it may prove to be more useful to assign these points to both

targets. This approach could be especially wuseful in
situations where target trajectories intersect or nearly inter- |
sect. It may even be easier to automate this algorithm than
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the currently used hierarchical, non-overlapping algorithm, but
it is difficult to speculate until the algorithm has been built
and tested. Regardless, this Moody and Jardine Bk algorithm
is another approach to generalizing the conventional single
linkage algorithm which is felt to have potential and therefore
deserves consideration for future studies.

6.2 Automating the Multi-Target Clustering Algorithm

The best multi-target cluster algorithm deter-
mined from the previous task must be automated before it can be
used in any practical system. If the previous two algorithms
are developed and the results prove to be unsatisfactory, then
it will become necessary to attempt to automate the output of
the existing single linkage algorithm. 1In this context, auto-
mating means that the clustering algorithm will be modified to
decide for itself what the optimal number of clusters are and
how the data should be assigned to these clusters. A study of
attribute normalization is an essential feature of this task.
The clustering algorithm would also be modified to output the
data in a tabular form rather than in tree diagrams. Finally,
the samples for each cluster should be automatically reordered
to appear chronologically correct so that a tracking algorithm
could properly process the data. Some of the modifications
will require changes to the existing clustering packages and
others may require the development of some post processing
programs for the sorted data. Nevertheless, 1if cluster
analysls 1s ever to be successfully used to sort data for
target tracking problems, the clustering algorithms must be
automated to output the data in the form needed by a tracking
algorithm.
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6.3 Intersensor Data Matching Procedure

After some type of data sorting procedure has
been adopted, data from different sensors for the same targets
must be properly matched so that tracking solutions may be
obtained for all of the targets. With passive DIFAR data, only
frequency and bearing estimates are generated for each signal.
Previous studies have shown that frequency and bearing measure-
ments from only one sensor are usually insufficient for
initializing or tracking unless the data spans a considerable
range in frequency and bearing. When only passive frequencies
and bearings are to be used for target tracking, one should
have overlapping measurements from at least two sensors to
insure accurate, timely tracking results. For multiple target
problems, the question then becomes how to match the individual
target data sets from one sensor with those from another
sensor. One could simply use a trial and error scheme for
matching the data sets until reasonable solutions were £found,
but some more organized and quicker scheme for doing this would
be preferred. There are several suggestions for solving this
problem.

One possibility would be to use the initial guess
procedure described in Section 2 to pick the most likely pair-
ings and to eliminate the impossible pairings of data sets from
two or more different sensors. If a reasonably accurate
initial guess is used, it would be possible to pair data sets
together to estimate an initial position and velocity guess for
that pair. Physical constraints on the range of the detection
systems and on the allowable velocities for ships could be used
to immediately eliminate impossible pairings of the data sets.
After the impossible pairings have been eliminated, the target
tracking algorithm could be 1initialized with the allowable
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guesses passed by the tracker's initial guess procedure. After
processing some more data, better estimates for positions,
velocities and accelerations from potential data pairings could
be found. Once again, physical constraints could be used to
eliminate the impossible solutions produced by certain pairs of
data sets. Basically then, a good initial guess procedure
would be more wuseful for eliminating impossible pairings of
data sets than for picking the most 1likely pairings of the
individual data sets. Nonetheless, such a process would be
extremely valuable in reducing the complexity of the data
matching problem.

A second approach would be to use the 0-1 integer
programming techniques as proposed by Morefield
(Reference 13). This approach would require the development of
a cost function which would be minimized by picking the correct
pairing of data sets for individual targets. The set of
pairings which minimizes this cost function would be chosen as
the proper pairings of data from that data set. The idea with
this approach would be to pick the most likely pairings of the
data out of all the possible combinations that could be
generated by a given buoy pair.

Another appealing approach would be to combine
the two techniques described above into a joint intersensor
data matching scheme. First, the initial guess procedure would
be used in conjunction with the physical constraints on the
targets and the measuring devices to eliminate the inpossible
pairings of data sets. This could still leave possible pair-
ings of data sets from the different sensors that would exceed
the number of targets thought to be present in the observation
range. Next, the O0-1 integer programming approach could be
used to analyze the possible pairings and pick the most likely
set from these allowable pairs.
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This latter approach seems to be a very appealing
one to pursue. The 1initial guess and elimination procedure
should be fairly easy to implement and should prove to be
reasonably quick with regard to computer applications. The
integer programming approach will be more difficult to develop
and implement and will probably require substantial amounts of
computer memory and time to pick the optimal sets of data
pairing. If speed and memory limitations are to be important
considerations for this intersensor data matching problem, then
the integer programming technique should be used only when
necessary. If pairings can be eliminated before the data sets
are passed to the integer programming algorithm, substantial
savings in computer time and memory should result. Thus, in
the interest of simplifying the decision making process and of
speeding up this process, both of these approaches should be
merged to create an intersensor data matching procedure.

6.4 Other Problems

The three subjects discussed above are planned
areas of work for the near term. The following subsections
mention several other areas identified as requiring work. It
also discusses some major research topics in multi-target
tracking which are currently deferred to later investigationms.

6.4.1 Identification of Redundant Data Sets - Another
topic which should be investigated concerns the identification

of multiple or redundant data sets for the same target as
observed by one sensor. If one observes a broad frequency band
to detect multiple narrowband signals, it becomes 1likely that
multiple lines from only one target will be observed in the
data. One cause for multiple signals would be the presence of
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harmonic multiples of a fundamental frequency from a given
target. When multiple signals from a single target occur, one
would like to be able to identify the multiple lines and group
them together for each of the targets. Being able to identify

redundant lines would be extremely valuable for determining how
many targets are actually present in a given set of frequency
spectra. Furthermore, if these multiple lines were identified,
one could pick only one line to be used for each target in the
intersensor data matching problem and substantially reduce the
number of possible combinations that need to be examined by
this processor. Thus, some sort of scheme for identifying
redundant lines from one target would be valuable in deter-
mining the total number of targets found in a given set of
frequency spectra and in reducing the complexity of the problem
to be solved by the intersensor data matching processor.

6.4.2 Compensation for Data Dropout - Another task that
warrants investigation concerns the compensation for data drop-

out that arises when acoustic data is gathered. A variety of
factors can lead to signal fading or possibly to periods of
data loss. These factors included propagation losses, smearing
losses, and random fluctuations in signal strength and ambient
noise levels. Some of the trial results not discussed in this
report showed that problems can be encountered with our data
sorting scheme when a signal temporarily fades from view. If
only one, two or maybe even three consecutive measurement
updates are lost, the cluster analysis algorithm could success-
fully continue to sort the data 1into correct data sets.
However, in cases where four or more consecutive update times
were encountered with no measurement output, the clustering
algorithm improperly sorted the data after the signal was
recovered. Rather than joining the data from before the
temporary data loss period to the data recovered after this
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loss, the clustering algorithm output two distinct clusters
which one would associate with two different targets. Clearly
the loss of data over this interval leads to data sorting
problems.

Two possible solutions to this problem can be
offered. One approach would be to prefilter the data to fit
some kind of curve or surface to the data. When no measure-
ments were output for given time points, one could use the
fitted curve to predict what a measurement value should have
been and use this wvalue as a substitute for the missing
measurement update. Another approach would be to use a target
tracking algorithm to predict what the measurement value should
have been. Provided the tracker has converged onto a legit-
imate solution, the best estimates from the last time point can
be integrated forward to predict what the next measurement
should be. This predicted measurement could be used to replace
lost data when data dropout occurs. Either of these two
approaches will probably succeed, but only when the target
moves along a non-maneuvering, constant velocity trajectory.
If the target is involved in some kind of maneuver when data
loss occurs, neither of these prediction schemes are likely to
compute good estimates for the missing data points. These two
prediction schemes seem to be the most likely techniques to be
used to compensate for data loss, but both have some pitfalls.
It will not be known how effective either approach can be with-
out experimenting with some data sets and then analyzing the
results to determine the efficacy of these approaches.

6.4.3 Long Range Research Topics - Many other problems

exist which will need to be 1investigated before a robust
multiple target algorithm can be built. For 1instance, it is
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still not known if the matched multiple target data should be
processed by a bank of single target tracking algorithms
operating in parallel or if a new multiple target tracking
algorithm must be developed which updates all of the individual
tracks simultaneously. Still another task that merits research
would be the development of an a posteriori processor to deter-

mine if the data have been properly sorted by the clustering
process and then correctly matched with the intersensor data
matching processor. It seems that an a posteriori processor

could be merged with the cluster analysis and intersensor data
matching processor to develop a predictor-corrector type of
approach to the sorting problem associated with the multiple
target tracking problem.

Besides the problems mentioned, still other
questions are likely to arise as the 1investigations into the
multiple target tracking problem continue. However, the tasks
proposed here are believed to be a natural progression to the
work begun and described in this report. Qualified success has
been attained in our 1initial data sorting study and the
proposed tasks should lead to further progress on this diffi-
cult problem. Solutions from these tasks should lead to the
successful implementation of future target tracking systems.
For the present, however, it still remains to be seen if a
fully automated s?stem can be developed to track multiple
targets even within constrained scenarios.
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RESPONSE SURFACE METHODOLOGY (RSM) STUDY
OF THE HYBRID TRACKING ALGORITHM
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A.0 INTRODUCTION

A significant task under .this contract was to
analyze the performance and parameter dependence of the Hybrid
tracking algorithm. Three control variables were used in this
study. They were signal-to-noise ratio (SNR), data integration
time (INT), which coincided with the time between successive
measurement updates for this study, and buoy separation
distance (SEP). Performance of the algorithm was measured by
the following variables: the average distance error for the
tracking solutions (ADE), the predicted distance error (PDE),
i.e., the difference between actual and predicted position 300
seconds after the end of data acquisition, and convergence time
(CT), the time required for the batch initializer to converge
to a trajectory that 1is within 500 meters of the true
trajectory.

To perform the analysis of Hybrid's performance,
a statistical technique known as Response Surface Methodology
(RSM) was used.* RSM essentially uses multiple regression to
relate the response of a particular system or process to the
various inputs (independent wvariables) which are assumed to
affect it. The goal of RSM is to create a surface which
accurately reflects the system response function and then
explore this surface for extrema and optimal operating areas.
RSM is closely related to the field of experimental design and
most RSM plans or designs have their origins in the ideas
developed by statisticians working in the areas of analysis of
variance and statistical design of experiments.

*  Myers, Raymond H., Response Surface Methodology, Allyn

and Bacon, Inc., Boston, 1971.
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A.l Description of Independent Factors

In order to design the RSM experiment, decisions
had to be made on which factors should be used to investigate
the Hybrid's tracking performance. It was decided that of the
possible factors, data quality most affected the Hybrid's
tracking solutions; so the three factors which govern the data
quality were chosen for the independent RSM parameters. The
three independent parameters chosen were the separation
distance between sengsors (SEP) in a triangular sonobuoy deploy-
ment pattern referred to as tri-tac pattern, the data inte-
gration time used to gather the data (INT), and the signal-to-
noise ratio of the transmitted signal (SNR). For this study
the integration time coincides with the data update rate and
the signal-to-noise ratio is the usual difference in the source
level and the ambient noise level in d4B.

A.l.1 Sensor Separation Distance (SEP) - SEP was chosen

as an independent factor because the quality of the tracking
was strongly influenced by the placement of the sonobuoy
pattern used to observe the target. For all of the test design
points, an equilateral tri-tac pattern was used with sonobuoys
placed at each of the three vertices. The distance between
sensors was varied for each design point in such a fashion as
to allow the centroid of the pattern to remain fixed. In
actual practice, operators have some control over where sono-
buoys are initially deployed. Once the sonobuoys are dropped,
however, thelr motion is governed only by the ocean currents
and winds. For this study, it was assumed that the sonobuoys
were dropped onto precisely known positions and remained
stationary throughout the scenario. From the test design,
Hybrid's response to the positioning of the sonobuoys and to
their relative separation could be determined and analyzed so
that optimal separation distances could be found.

. 4
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A.l1.2 Integration Time (INT) - The second independent
factor chosen was the data integration time (INT). For the

data simulation program wused, it was assumed that the
measurement update equation was governed by

where 3 1s the resolution of the frequency measurement in Hz
and T 1s the integration time in seconds that is wused to
generate the estimate. For this study, it :ras assumed that INT
coincided with the update 1intervals for generating the
frequency and bearing estimates. Reviewing this equation, it
can be seen that the resolution of the frequency estimate is
inversely proportional to INT. When INT 1is small, the
corresponding resolution of the frequency estimate will be very
coarse due to this inverse relationship. Conversely, to obtain
frequency estimates with a very fine resolution, large values
for INT must be used. This equation for relating resolution of
the frequency estimates to the integration time period chosen
is true for most passive acoustic detection systems that are
used. With this model, the trade-off between accuracy in
frequency estimates and data update intervals could be examined
to determine its effect on the tracking response of the Hybrid
algorithm. INT is a factor that an operator can control and
vary with time, so this RSM study will determine what wvalues
for INT should be chosen to optimize Hybrid's tracking response.

A.1.3 Signal-to-Noise Ratio (SNR) - The last inde-
pendent factor chosen was the signal-to-noise ratio (SNR) of

the transmitted signal as measured one yard from the target.
This factor 1is completely removed from control of the
operator. It is only a function of the target's transmitted
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signal strength and the ambient noise level of the ocean. The
transmitted signal strength varies from target to target and
the ambient noise level varies according to the sea state of
the environment. SNR, as detected at a sonobuoy receiver, is
also a function of the range from the target to the individual
buoy. The propagation loss for the signal passing through the
water is assumed to be 20 log (R) in dB, where R 1is the
magnitude of distance from the target to the sonobuoy's
receiver. The propagation loss 1is idealistic, but over the
ranges and depths involved, it is a reasonable approximation
for the purpose of this study. As will be detailed 1in
subsequent sections, other random fluctuations in signal
strength and ambient noise level are also assumed to influence
the computed value of SNR at the receiver. Basically, however,
SNR is a function of the signal strength, the ambient noise
level, and the distance between the target and receiver. The
only controlling factor an operator would have on SNR would be
to deploy the sonobuoys very close to the target, but
generally, the target (nsition will not be known very
accurately a_priori. This may then be thought of as an
uncontrollable factor.

A.2 Response (Dependent) Factors for RSM Study

Three different dependent factors were used to
define Hybrid's response (i.e., performance) at the various
design points. The three responses used were the same as those
used previously (Reference 1) to quantify Hybrid's tracking
capabilities. Separate response surfaces were generated for
each of the response factors. The three dependent, or

response, factors used were the average distance error of the
estimates (ADE), the time where the Hybrid successfully
converged upon a satisfactory set of initial conditions (CT),
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and the distance error incurred by predicting the final
estimate forward five minutes after the last data point was
processed (PDE).

A.2.1 Average Distance Error (ADE) - ADE is one measure

commonly used to describe the accuracy of an estimated target
solution output by a target tracking algorithm. This measure
provides an indicator of how well tracker estimates £fit the
actual trajectory over a portion of the trajectory where there
is data. ADE is defined as:

te
- (1 = 2 =

where ( ~ ) denotes the estimated solution at time t and the
subscript T denotes the true value at time ¢t. ADE then
provides an average of the position error between the estimated
and the true target trajectory over the entire length of the
accumulated data stream.

A.2.2 Convergence Time (CT) - Unfortunately, ADE by
itself does not always provide a sufficient measure of the

tracking performance for a given tracker such as Hybrid. One
not only wants an algorithm that yields minimum ADE, but also
an algorithm which converges as rapidly as possible onto a
suitable estimate for the target's trajectory. For the Hybrid
in particular, quick convergence 1is preferred because the
tracker will switch from the computationally slower batch
initializer to the faster sequential tracker as soon as its
convergence criteria have been net. For this study, the
convergence time was chosen to be the time at which the tracker
switched from the batch to sequential filter and the tracking
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results eventually yielded position estimates that fell within
500 meters of the true position values. In cases where these
criteria were not met, a time which corresponded to the end of
the scenario was assigned to CT.

A.2.3 Predicted Distance Error (PDE) - The last factor
used to measure Hybrid's tracking response was PDE. This

measure is wused to determine the Hybrid's capability for
prediciting a target's position five minutes after the last
data point has been processed. In general, tracking algo-

rithms, such as Hybrid, which use a suboptimal motion model
will often yield satisfactory results for CT and ADE, but will
prove to be a poor predictor. The predictive capabilities of a
tracker are of interest for weapons and sensor deployment.
This third factor combines position and velocity errors into a
single measure. From this study, control values are sought to
maximize Hybrid's predictive capabilities.

A.3 Orthogonal Central Composite Design (OCCD)

This RSM study, wuses an orthogonal central
composite design (OCCD) to select the design points used to
generate the quadratic fits for the response surfaces. The
independent factors SNR, SEP, and INT were varied according to
this experimental design so that the quadratic response surface
could be obtained with a minimum number of design points. The
OCCD 1is essentially a 23 factorial design augmented by a
center polnt and axial points that are chosen so as to produce
zero correlation among all factors and, derivatively, their
coefficients. Geometrically, this design counsists of a cube
with experiments being performed at the corners, the center
point, and the ends of axial 1lines passing through the center
and perpendicular to each cube face. Practically, this means

A-6
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that computer simulation runs were made with the SNR, SEP, and
INT values given at each of these design points. The values of
the three responses =-- ADE, PDE, and CT -- were found at each
point and a quadratic surface relating each response to the
independent variables was constructed.

The OCCD is a standard RSM design. There are
several reasons for using it, among them are:

(a) To fit a quadratic surface, all factors, at
least, must occur at three levels. However,
3k experimental designs (k factors each

occurring at three 1levels) contain large
numbers of experimental points which are
used to estimate higher order interactions
and not main effects, quadratic terms, or
first order interactions. An OCCD, on the
other hand, uses far fewer points and
estimates only main effects, quadratic
terms, and first order interactions.

(b) Since each factor in the OCCD occurs at five
levels, this design offers broader actual
experimental coverage of the area of
interest.

(c) The axial points can be chosen so that the
correlation between all the estimated
parameters is zero.

It can be seen that an OCCD presents an 1ideal
design for obtaining quadratic response surfaces. This design
uses a minimum of experimental points to obtain a fit, allows




Tracor Applied Sciences

quadratic fits to be made for the data, and results in
uncorrelated estimates for the coefficients. Originally, one
OCCD was used which was fully expected to test the limits of
Hybrid's tracking capabilities. Unfortunately, some of the
experimental points yielded poor quality data which prevented
the Hybrid from converging onto an accurate solution. Rather
than use this poor initial design, it was decided to use a
L second OCCD which would allow us to accurately model the
Hybrid's responses to values of the three independent factors
that fell within Hybrid's actual operating range. The first
design will be discussed next, along with a description of its

shortcomings. Following this, the revised OCCD that was used
for this study will be described and will be followed by
detailed analyses of the RSM results obtained from this design.

A.4 Description of the Two OCCD's Used

Originally, an OCCD was chosen that was intended
to test the limits of the Hybrid's tracking capabilities. Over
207 of the experimental data points failed to yield sufficient
data for the Hybrid to track the target. Problems were caused
by extremely poor quality data, lengthy periods of data droput,
and in some cases, insufficient data for the tracker to be
initialized. With such a large void in the data from this
design, it was decided that a reasonable, 1least squares,
quadratic fit would not be obtained so no response surfaces
were generated for this original design. The following is a
description of the design as well as a list of causes for the
problems encountered.

A.4.1 Original OCCD - Since this original OCCD was
intended to study the extremes of the Hybrid's performance,
wide ranges of values for the independent factors were used.
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At one end of the test values for each independent factor, very
good results were expected,‘while at the opposite end of the
test values, only marginal tracking results were expected.
Unfortunately, some of the expected marginal cases turned out
to be 1impossible for the Hybrid to handle. These results
emphasized the great care that should be taken in choosing
design points, because these points should provide useful
information about the actual operating range of the Hybrid
tracking algorithm.

The independent factors used for this RSM study
were SEP, SNR, and INT. The values for each of these factors
at each design level are given in Table A.I. The corresponding
target scenario used for this study, along with the buoy
positions for each design level are provided in Figure A.l.
Notice that a non-maneuvering target that passes through the
buoy field was used for this study. The simulated scenario
lasted for 20 minutes. For the SNR values given in Table A.I,
the values refer to the signal-to-noise ratio of the signal omne
yard from the target, not at the sonobuoy's receiver. The
propagation loss incurred by the signal passing from the target
to the receiver are subtracted from this initial SNR value to
compute the SNR at the receiver. These SNR's are given in
units of dB. Values for SEP are given in meters. For SEP, the
centroid of each buoy pattern used for this study was fixed at
x = 0 meters and y = 3500 meters. The placement of the buoys
for each design level was adjusted so as to keep this centroid
fixed and to keep the tri-tac pattern in the shape of an
equilateral triangle. Finally, the INT values are given in
units of seconds. Recall that the resolution of the frequency
estimates in Hz 1s inversely proportional to INT.
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TABLE A I
ORIGINAL O0OCCD
Factor (z) Mean () Delta (8)
SNR (dB) 70 8
SEP (m) 7500 2500
INT (sec) 25 20

Scaled axial point for a three factor OCCD:

a = 1.216

Transformation equation:

Experimental Design Values
-1 0 +1 +a

62 70 78 79.728
4,460 5,000 7,500 10,000 10,540

SNR (dB)

SEP (m)
INT (sec)
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FIGURE A.1 - SCENARIOS FOR ORIGINAL OCCD
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Problems were encountered at certain levels for
all of these parameters 1in this 1initial design. When the
values for SEP were greater than or equal to 10,000 meters,
insufficient data were obtained for the Hybrid to successfully
track the target. The separations were so wide that except for
SNR values that would be higher than any of our test values,
overlapping data from at 1least two sonobuoys could not be
obtained. Problems were also encountered when the SNR values
of 62 and 60.272 dB were used. Again, these values were so
small that no overlapping measurements from at least two
sensors were found. For the Hybrid to successfully track the
target, some interval of overlapping measurements from at least
two sensors is preferred to insure quality results. Finally,
severe problems were encountered when the smallest wvalue for
INT, 0.68 seconds, was used to generate frequency and bearing
estimates. Two factors caused this problem. One factor was
that the resolution in the £frequency estimate was so coarse
that little or no change in the frequency estimates was ever
seen. Secondly, the integration time 1is so small and the
frequency binwidth is so wide that very little signal is being
integrated into the ambient noise for an individual bin. This
resulcs in a severely reduced SNR for both the frequency and
bearing estimates which severely degrades the accuracy of these
estimates. The causes for the problems encountered with this
test design may then be summarized as follows:

(1) Two of the sensor separation distances were
too large.

(2) Two of the signal-to-noise ratios were too

small.

(3) One of the data integration times was much
too small.

A-12
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A4.2 Revised OCCD - After the problems associated with
the original OCCD were carefully studied, a second OCCD was

created. This design sought to eliminate the problems
previously encountered so that accurate response surfaces for
Hybrid's tracking performance could be generated. To revise <
the test design, the following criteria were used to eliminate
the problems previously encountered with the experimental data
set.

(1) The range of values for INT were reduced to
correspond more closely to rates most
commonly used for deployed sonobuoy systems.

(2) The center point of the design values was
fixed so as to eliminate very small wvalues
for INT.

(3) The range of values for SNR was reduced so
that more realistic measurement could be
generated by the simulatiorn. program.

(4) The mean for the SNR values was increased so
that higher overall design values would be

used.

(5) The range of values for SEP was reduced so
that more overlapping of the individual
sonobuoy's observation ranges would occur.

(6) The mean of the values for SEP was also
reduced to assure more overlap in
measurements from the individual sonobuoys.

A-13
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(7) The centroid of all the tri-tac sonobuoy
patterns was moved closer to the initial

starting point of the trajectory to
guarantee that stronger signals and more
measurements would be available for track
initialization.

All of these factors were used to redesign the experimental
0CCD. The revised design points are given in Table A.II,
followed by a geometric representation of this design in Figure
A.2. Figure A.3 shows the scenarios used for this test design,
and Table A.III lists scenario parameters.

A.4.2.1 Summary of Results from the Revised OCCD - The
results from this OCCD were much improved over those from the

first design. The Hybrid was able to converge onto a solution
for all the experimental design points. For two of the design
points where SEP was large, the Hybrid converged onto a
solution, but this solution never converged to less than 500
meters error between the estimated track and the true track.
This was probably caused by too little overlap in measurements
from at 1least two sensors, preventing the Hybrid from
successfully converging onto the true trajectory. Since the
Hybrid never converged to less than 500 meters distance error,
a value of 1,200 seconds was assigned to these cases because
this time coincides with the final time of the simulated
scenario. The results from this revised OCCD experiment are
given in Table A.IV. Detailed analyses of the RSM results that
were generated for this experimental design are described in

detail in the next subsection.
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TABLE A. Il

REVISED OCCD

Factor (z) Mean (W) Delta ()
SNR (dB) 76 6
SEP (m) 6500 1500
INT (sec) 12.5 7.5
Scaled axial point for a three factor OCCD:
a = 1.216
Transformation equation:
_z - U
X= 7%
Experimental Design Values
-1 0 +1

SEP (m)
INT (sec)

SNR (dB) 70.0 76.0

000 6,500

5.0 12.5

82.0
8,000
20.0




Tracor Applied Sciences

INT

(76, 6500, 21.62)
’

(70, 5000, 20) (70, 8000, 20)
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(76, 6300, 3.38)

FIGURE A.2 - GEOMETRICAL REPRESENTATION OF THE REVISED OCCD
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TABLE A.III
DESCRIPTION OF REVISED OCCD'S SCENARIO

IInitial Conditions for Target'

to = 0 sec

Xo = -1000 m

Yo = 0 m J
Vo = 5 m/sec

8 = 75°

Final Conditions for Target l

tf = 1200 sec
Xf = 553 m
yg = 5796 m

Vg = 5 m/sec

9f = 75°

Centroid For All of
the Tri-Tac Patterns
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TABLE A.II1I (Continued)

Buoy Positions for Revised OCCD
Design

Scenario Level SEP (m) Buoy # X (m) Y (m)
A +a 8,324 1 -4,162 97
2 0 7,306

3 4,162 97

B +1 8,000 1 -4,000 191
2 0 7,18

3 4,000 191

C 0 6,500 1 -3,250 624
2 0 6,252

3 3,250 624

D -1 5,000 1 -2,500 1,057
2 0 5,386

3 2,500 1,057

E -a 4,676 1 -2,338 1,150
2 0 5,200

3 2,338 1,150
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TABLE A.IV

RESPONSES FOR EACH TEST DESIGN LEVEL FOR THE REVISED OCCD

Design Levels Responses
Case SEP SNR INT CT ADE PDE
(dB) (m)
1 -1 -1 -1 112.50 273 677
2 -1 . -1 +1 430.00 163 656
3 -1 +1 -1 32.50 61 383
4 -1 +1 +1 150.00 35 1015
5 +1 -1 -1 *1200.00 1053 2582
6 +1 -1 +1 370.00 451 589
7 +1 +1 -1 37.50 150 481
8 +1 +1 +1 130.00 65 104
9 0 0 0 218.75 297 404
10 -a 0 0 81.25 78 94
11 +a 0 0 *1200.00 2574 1602
12 ﬂ 0 -a 0 581.25 299 878
13 0 +a 0 168.75 87 234
14 0 0 -a 45.63 218 869
15<__h 0 0 +a 140.53 104 206

*For these points, the Hybrid met its own convergence criteria,
but the tracking errors were never reduced below 500 m.

Rather than accept the output CT, the final time of 1200 sec.
was assigned.
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A.5 RSM Results and Analyses of These Results

This section and all further discussions describe
the RSM results for the revised OCCD. Tables of the response
surface fits, the optimization and eigenvalue results, as well
as response surface contour plots are presented for each of the
three responses.

A.5.1 Description of RSM Tables - Tables A.V, A.VII,
and A.IX provide summaries of the analyses for the surfaces fit

to the three response factors. Note that each of these three
tables 1is divided into two sections. Descriptions of these
sections follow:

(a) Response Surface Values and Statistics -

This section contains information about the
surface analyses of the statistical
significance of the wvarious estimated
parameters which defined this surface.

(b) Response Surface Analysis - This section

contains the information required to analyze
the particular surface which has been fitted
to the data.

Under section (a) the following pieces of
information are given:

(1) Coded Betas - With RSM we were fitting a
quadratic model of the form:

N N . N-1 X
E(y) = B, + § B;jX; + | B;j;X;* + )

) T B
i=1 i=1 j=1 i=3+1

ji¥3X4
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To prevent numerical problems encountered
when inverting a matrix which contains
values differing by several orders of
magnitude and to eliminate correlation
between the linear and quadratic terms 1in

the model, the Xi's are coded variables of
the form

Z., ~ u.

Xi = —lKT——i where
i

Zi = the raw data value

Yy = the center point value

Ai = the distance from the center point
to the +1 level of that variable

in the factorial part of the OCCD

Thus, for SNR the coding is:

Zann - 76
% o CSMR

SNR 6 ’

For SEP the coding is:

Xgpp = 500 ¢ and

A-22
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For INT, it is:

INT™ 7.5

Since there are 2zero correlations among all
the coded wvariables, their squares, and
their cross-products, the response of the
dependent variable to a unit increase in one
of the independent variables can be deduced
directly from the model. Note, however,
that a unit increase in the coded variables
corresponds to an 1increase of Ai in the
uncoded variables.

(2) Uncoded Betas -~ This column contains the
coefficients of the quadratic surface
expressed in uncoded form, that 1is, the
model which uses these uncoded coefficients
can use raw data to describe the response
surface.

(3) F-Value - For each coefficient, an F-value
is generated by computing the reduction in
the total variance, caused by inclusion of
this variable in the model, compared to the
egstimate of the variance of the process.
This amounts to a test of hypothesis

0 ° Bk = 0 , versus

Hl : Bk % 0.
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If the F-value is greater than some critical
value for a particular o-level, then we
reject the hypothesis that the coefficient
is zero and assume that, statistically, it
is different from zero.

(4) oa-Level - When testing any hypothesis, there

are two kinds of errors which may be
committed:

(a) Type 1 - To reject Hy when it is
actually true, and

(b) Type 2 - To accept Hy when it is
actually false.

The probability associated with Type 1
errors 1s called the size of the test and
one minus the probability associated with
the Type 2 error is called the power of the
test. What would be most desirable is to
both minimize the size and maximize the
power of the test. Unfortunately, with a
fixed sample size this cannot be done.
instead, the size of the test is fixed at
some probability level, «, and the power 1is
maximized. Thus when it 1is said that a
hypothesis test is significant at an o = .1
level, it 1s meant that the probability of
Type 1 error has been fixed at 0.1 and the
power of the test has been maximized (the
probability of Type 2 error has been

A-24




minimized). An asterisk in the a = .1 or
a ® .2 columns means that the hypothesis
test for this coefficient is significant at
this o level.

Under section (b) the following information

Tracor Applied Sciences
appears.
(L)
(2)
(3)

One of the goals of RSM was to find an
optimum or near optimum set of operating
conditions for the response under
consideration. Because the fitted surface
was a quadratic, the wusual techniques of
multivariate calculus used to find
stationary points was readily applied. This
section gives the —coordinates of the
stationary point for this surface.

Stationary Point Value - This gives the
value of the fitted surface at the
stationary point.

Canonical Representation of Surface - In

matrix representation, the estimated surface
is given by

N >T 7

T
y0=b°+bX+XBX

where

bo - is the intercept
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|
)

A

B - is the vector (51, 52, ceey bn) of

estimates for the linear factors
-
X - is the vector (xl,...,xn)

B - is the matrix

| By B12/2..... 51072
B2z B2z, Bany2
bBln/Z...."...”...".Bnn B

Through a series of suitable translations and
rotations, the equation above can be rewritten as:

~

§o= ¥, F AW, 2+ .+ Ayt

= §0 + waW , Where

>

Y - is the value of the surface at the
stationary point

where xl,...,xn are the

eigenvalues of the B matrix

Wqyeoo W are the coordinate
1 n

axes in the eigenvalue system.
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(4)

where M 1is a matrix consisting of the
normalized eigenvectors of B.

There are several things which can be
determined from the canonical representation
of the response surface:

(a) If all Xi's are negative, we have a
maximum point, if they are positive we
have a minimum point, if they are both
positive and negative we have a saddle
point;

(b) The %ﬁs indicate the directions of
greatest 1increase or decrease of the
response in terms of the W

coordinate axes;

(c) This representation helps to determine
the shape and characteristics of the
response surface so that nearly optimum
operating conditions can be determined.

x to w Transformations - This is the set of
linear equations that relates the
x~-coordinates to the w-coordinates.
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Thus, when a particular operating point or
set of operating conditions is determined by
using the canonical form of the equations,
this transformation can be used to £find the
appropriate set of x-values.

A.5.2 RSM Analysis of the Hybrid's ADE Response
Table A.V describes the response surface 1information for the

average distance error (ADE) data. Residual versus fitted ADE
plots, generated by the raw ADE values, indicated that as ADE
increased, the variance of the residuals increased. This is
the wusual indication that a 1log transformation should be
applied to the dependent variable. The 1log transformation
succeeded in reducing the variance of the residual sum of
squares after the fit, so response surfaces of the following
form were generated:

log,, (ADE) = b, + BTk + x'Bx .

The regression F-value 1indicates a regression which 1is
: significant at the o = .1 level and the RZ value shows that,
i after taking the mean into account, the surface accounts for
| about 88% of the remaining variance in the data. The F-values
| for the coefficients indicate that, by far, the most
significant factors are the linear SF? and SNR terms. Of

somewhat less importance are the linear and quadratic INT terms.

The analysis of this surface indicates that there
is a stationary point just outside the experimental region with
an ADE wvalue of 146.0. The eigenvalues show that the
stationary point 1is a saddle point with the directions of
maximum decrease along the w1 and w, axes. From the x to w
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TABLE A,V

RSM RESULTS FOR LOGlO (ADE)

RESPONSE SURFACE VALUES & STATISTICS

VARIABLE CODED BETA UNCODED BETA F-VALUE |a=.1|a=.2
8, 2.28 -25.166
8, (SEP) .322 - .000029 13.4 * *
82 (SNR) - .33 . 755 14.4 * *
85 (INT) - .145 .0939 2.7 *
B 117 519 x 1077 7
B2 - .184 - .00511 7
8 a8 - .205 - .00364 2.2 *
812 - 047 - .518 x 107° 2
813 - .03 - 298 x 10°° 1
3 - .0017 - .383 x 10°% 0.0
Regression F - 3.95 - Significant at a = .1 R2 = 87.7
RESPONSE SURFACE ANALYSIS
Stationary Point Coordinates:
SFP = 4171.7 SNR = 71.7 INT = 10.8
Stationary Point Value:
146 .0
Eigenvalues: 8

Ay o= - .00511 A, = - .00364 A5 = 5.38 x 10

A-29
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TABLE A.V (Cont.)

X TO W TRANSFORMATION

o

-.000511 -1.0

= .0004 - .013

-1.0 .00051
.

A-30

.013 —W
1.0

.00041

-

-
S]E‘.]?-1
SNR

INT

74.0 |
11.55

4171.7




Tracor Applied Sciences

transformation, it can be seen that Wy direction corresponds
basically to the SNR and the Wy direction corresponds
basically to INT. Thus ADE can be reduced by increasing SNR
and INT. Also, from the x to w transformation it can be seen
that Waq corresponds to SEP and the associated eigenvalue
indicates that decreasing sensor separation also decreases
ADE. Note, however, that all of the Xi's are quite small,
which indicates a fairly flat surface for the quadratic
response.

Figure A.4 and A.5 show the three-dimensional
plot and contour plot, respectively, for the log (ADE) response
for SNR = 68.704 dB. Table A.VI defines the values for the
contour symbols used in Figure A.5. The contour plot indicates
that the lowest ADE values occur for small separation distances
and long update intervals. There are two primary reasons for
this:

(1) Due to the previously described inverse
relationship, long integration times

correspond to very accurate data estimates.

(2) Once initialization has occurred, highly
accurate data measurements lead to more
accurate state vector estimates and thus
lower the distance errors.

However, as separation distances increase, the algorithm
becomes less and less sensitive to integration time. For large
separation distances, the same ADE occcurs for the entire range
of INT's. This is especially true at low SNR values.
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TABLE A.VI
DEFINITION OF CONTOUR -

SYMBOLS FOR LOG10 (ADE)

Symbol Contour Value
1 1.25
2 1.50
3 1.75
4 2.00
5 2.25
6 2.50
7 2.75
8 3.00
9 3.25
A 3.50
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SEP X 1000(m)

Figure A.5 CONTOUR PLOT OF LOG10 (ADE) FOR SNR = 68.704
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A.5.3 RSM Analysis of the Hybrid's CT Response

Table A.VII contains the response surface information for the
convergence time (CT) data. As with the ADE data, residual
versus predicted CT plots generated by the raw CT values

indicated that as CT increased, the variance of the residuals
increased. A log transformation was applied to CT and a model
of the form

log,,(CT) = b, + blx + 3B %

was fitted to the data. The regression F-value was significant
at the o = .1 level and the R2 value indicates that, after
adjusting for the mean, the surface accounts for about 877 of
the remaining variance in the data. From the coefficient
F-values, it can be seen that the important terms in the model
are linear SEP and SNR terms and, to a somewhat lesser degree,
the linear and quadratic INT terms.

The analysis of this surface indicates that there
is a saddle point which lies just outside of the experimental
region and the value of the function at this point is 113.9.
From the canonical representation, it can be seen that the
surface decreases along the w1 axis and increases along the
Wy and w, axes. The w to x transformation shows that the
Wo axis corresponds to SEP, while the Wy and wy axes are
made up of both SNR and INT contributions. Figure A.6
illustrates the 3-dimensional plot generated by fixing SNR at
its lowest level(68.704 dB), and then graphing the resulting
equations as functions of SEP and INT. Figure A.7 is the
contour plot associated with this graph. Table A.VIII contains
a table of the values for the various contour lines. From the
contour plots, it is clear that minimum CT's occur for small
values of SEP and INT. Furthermore, as SNR 1increases, SEP
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TABLE A VII

RSM RESULTS FOR LOG10 (CT)

RESPONSE SURFACE VALUES & STATISTICS

VARIABLE | CODED BETA | UNCODED BETA |F-VALUE |a = .1 |a = .2
84 2.26 14.94
8, (SEP) 218 .000844 5.8 * *
8, (SNR) | - .329 - .366 13.2 * *
81 (INT) 171 0118 3.5 *
Bu .084 374 X 1077 .3
Bz 085 .00236 4
8 as - .316 - .00561 4.8 * *
B - .120 - 136 X 1074 1.3
811 - .152 - 135 x 1074 2.1
82 .142 .00315 1.8

Regression F - 3.68 - Significant at o« = .1 R2 = 86.9

RESPONSE SURFACE ANALYSIS

Stationary Point Coordinates:
SEP = 7302.1 SNR = 87.1 INT = 16.7

Stationary Point Value:
113.9

Eigenvalues:

g i
A =-.00591 Ay = 1.93 x 10 Aq .00266
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TABLE A.VII (Cont.)
XTO W TRANSFORMATION

p— -1 ~ T — 1 r~ —

Wl .000913 -.187 .982 SEP - 6.77

W2 = -1.0 -.0031 .00035 SNR + 7302.8

W3 .00294 -.982 -.187 LIN‘I‘ 67.2
L - L- - - L -
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SYMBOLS FOR LOG

TABLE A. VIII

DEFINITION OF CONTOUR

10 €D

Symbol

Contour Value

O O W P W oo oD

.00
.25
.50
.75
.00
.25
.50
.75
.00
.25
.50
.75
.00

P VR UL VO I VS I A I A 2 I o B B s e e
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Figure A.7 CONTOUR PLOT OF LOGlO (CT) FOR SNR = 68.704
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becomes less and less important while INT retains its
importance.

A.5.4 RSM Analysis of the Hybrid's PDE Response - Table
A.IX contains the response surface information for the
predicted distance error (PDE) data. Residual plots indicated

that no transformation of the independent variable was
necessary, so the fitted model is of the form

PDE = b, + b % + x'Bx.

The regression F-value indicates significance at the o = .1
level and the RZ value is 89.0. The coefficient F-values
indicate that all of the 1linear terms are significant, the
quadratic SEP is significant, and all the two-factor inter-
action terms are significant. The eigenvalues for this system
indicate that the extremum for this response is a saddlepoint
that lies outside the test region.

The three-dimensional and contour plots for PDE
indicate several interesting things. (The contour symbol
values are presented in Table A.X) First, for low SNR values
as are shown in Figures A.8 and A.9, there is a very rapid
degradation in PDE as SEP increases. The optimal situation
occurs for highly accurate data measurement (large INT values)
with small to moderate SEP values. Thus, large areas of sensor
overlap in conjunct:>n with high quality data can assure low
PDE values for low SNR values. Secondly, for a SNR value of
76.0 dB, Figures A.10 and A.11 show that there is a wider range
of optimal values. Roughly, as SEP increases, INT must also
increase to keep PDE at a minimum value. Thirdly, for the high
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! TABLE A IX

RSM RESULTS FOR PDE

RESPONSE SURFACE VALUES & STATISTICS

VARIABLE | CODED BETA | UNCODED BETA F-VALUE |a= .1
Bo 718.36 3282.57

81 (SEP) 260.91 1.9 5.71 * *
3, (SNR) | -301.65 - 144.27 7.6 * *
8, (INT) | -234.12 - 316.33 b6 ¥ *
By 257.43 .00011 2.2 *
8.2 60.26 1.67 12

8 47.71 . 848 .08

81 -331.26 - .036 6.7 * *
813 -372.69 - .033 8.5 * *
82 283.76 6.31 5.0 * *

Regression F - 4.5 - Significant ata = .1 R2 = 89.0

RESPONSE SURFACE ANALYSIS

Stationary Point Coordinates:
SEP = 3251.61 SNR = 65.31 INT = 7.18

Stationary Point Value
787.41

Eigenvalues:

Ay = - 1.919 1, = -2.36 x 107 = 4.441

Aq
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TABLE A.IX (Cont.)

W TO X TRANSFORMATION

el - -
Wl - .0002 .66 -.752
W2 = -1.0 -.0043 -.0036
W3 .0056 -.752 -.66
L - -
A-43
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TABLE A X

DEFINITION OF CONTOUR

SYMBOLS FOR PDE

Symbol Contour Value

200
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1200
1400
1600
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SNR value of 83.296 dB, Figures A.12 and A.13 illustrate that
there is a wide range of conditions for minimizing PDE.
Essentially, as SEP increases, INT must increase also.

The interpretation of significant two-factor
interactions can be seen from Figure A.11 which shows the
contour plot of the surface that results from fixing SNR at its
average (= 76.0) value and allowing SEP and INT to wander over
their respective test ranges. Note that at low values for INT,
PDE goes high to low as SEP increases, while at high INT
values, PDE goes from low to high values as SEP increases. If
the two curves were plotted on the same axes, a pair of
intersecting parabolas would result. Thus, the meaning of a
significant SEP-INT interaction 1is that for the average SNR
value, PDE behaves quite differently for changes in SEP at low
INT values than it does for changes in SEP at high INT values.
The same reasoning applies to significant SEP-SNR and SNR-INT
interactions.

Thus, to minimize PDE there must be high quality
data for large buoy separation distances. For small sensor
separation distances, there must be a great deal of data with
quality being of less importance. The ranges over which these
statements apply vary, of course, with SNR.

A.6 Conclusions From This RSM Study

This RSM study  has quantified Hybrid's
performance measures ADE, CT, and PDE as functions of three
independent factors -- SEP, SNR and INT. It must be emphasized
that these results were valid only for this particular scenario
and for those values of the independent factors that fell
within our test region. This particular scenario was for a
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nonmaneuvering target whose trajectory ran through the tri-tac,
sonobuoy pattern. The response surfaces could very well be
different for targets that used a maneuvering trajectory or
that used a trajectory that ran outside the sonobuoy field.
For each of the three Hybrid responses, their respective
extremum points fell outside the test region. These extrema
responses may not be accurate because the error of wvalues
extrapolated outside the test region may increase rapidly.
Nevertheless, when one understands the 1limitations of this
approach, RSM techniques prove to be very useful for
quantifying Hybrid's response to the data gathering factors
SEP, SNR and INT. The results from this study appear to be
credible because they can be explained intuitively as they were

in previous subsections. The RSM approach has been a very
useful tool for examining Hybrid's tracking performance and can
be useful for examining the response of it and other trackers
in the future.
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